FSH-induced upregulation of cAMP-PDE4 activities was decreased in cultured Sertoli cells when alteration of cell proteoglycans (PGs) metabolism was simultaneously induced either by para-nitrophenyl beta-d-xyloside (PNPX) or by sodium chlorate. This effect was restricted to the particulate PDE4 activities and its timing was consistent with the half-life of Sertoli cell PGs. It did not result from alterations in Pde4d variants expression, the major FSH-regulated PDE4 in Sertoli cells. Moreover, lack of changes in the particulate levels of major immunoreactive 75 kDa and 90 kDa PDE4D proteins, corresponding likely to short PDE4D1 and long PDE4D3/D8/D9 isoforms respectively, suggested that the decrease in FSH-stimulated of PDE4 activities in chlorate- and PNPX-treated cells at the end of the 24-h incubation period resulted from the increased reversal of the activated particulate PDE4(D) activities back to unstimulated levels. By controlling FSH-stimulated particulate PDE4 inactivation through a still unknown mechanism (sustained activation of PKA or reduction of phosphoprotein phosphatase activities), cell PGs could be involved in the alteration of cAMP response to FSH accompanying the transition of Sertoli cells from proliferative to non-proliferative differentiated state.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbagen.2006.12.006 | DOI Listing |
Curr Top Dev Biol
January 2025
School of Molecular Biosciences, Washington State University, Pullman, Washington, United States. Electronic address:
For mammalian spermatogenesis to proceed normally, it is essential that the population of testicular progenitor cells, A undifferentiated spermatogonia (A), undergoes differentiation during the A to A1 transition that occurs at the onset of spermatogenesis. The commitment of the A population to differentiation and leaving a quiescent, stem-like state gives rise to all the spermatozoa produced across the lifespan of an individual, and ultimately determines male fertility. The action of all-trans retinoic acid (atRA) on the A population is the determining factor that induces this change.
View Article and Find Full Text PDFBMC Med Genomics
January 2025
Department of Surgery, Faculty of General of Medicine, Koya University, Koya, Kurdistan Region - F.R., KOY45, Iraq.
Background: During mammalian spermatogenesis, the cytoskeleton system plays a significant role in morphological changes. Male infertility such as non-obstructive azoospermia (NOA) might be explained by studies of the cytoskeletal system during spermatogenesis.
Methods: The cytoskeleton, scaffold, and actin-binding genes were analyzed by microarray and bioinformatics (771 spermatogenic cellsgenes and 774 Sertoli cell genes).
Hum Reprod Update
January 2025
Amsterdam UMC, Location Vrije Universiteit Amsterdam, Centre of Expertise on Gender Dysphoria, Amsterdam, The Netherlands.
Background: Transgender and gender diverse (TGD) people seek gender-affirming care at any age to manage gender identities or expressions that differ from their birth gender. Gender-affirming hormone treatment (GAHT) and gender-affirming surgery may alter reproductive function and/or anatomy, limiting future reproductive options to varying degrees, if individuals desire to either give birth or become a biological parent.
Objective And Rationale: TGD people increasingly pursue help for their reproductive questions, including fertility, fertility preservation, active desire for children, and future options.
Curr Issues Mol Biol
December 2024
College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
Spermatogenesis is an advanced biological process, relying on intricate interactions between somatic and germ cells in testes. Investigating various cell types is challenging because of cellular heterogeneity. Single-cell RNA sequencing (scRNA-seq) offers a method to analyze cellular heterogeneity.
View Article and Find Full Text PDFCells
January 2025
Third Department of Urology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece.
Phosphodiesterases, particularly the type 5 isoform (PDE5), have gained recognition as pivotal regulators of male reproductive physiology, exerting significant influence on testicular function, sperm maturation, and overall fertility potential. Over the past several decades, investigations have expanded beyond the original therapeutic intent of PDE5 inhibitors for erectile dysfunction, exploring their broader reproductive implications. This narrative review integrates current evidence from in vitro studies, animal models, and clinical research to clarify the roles of PDEs in effecting the male reproductive tract, with an emphasis on the mechanistic pathways underlying cyclic nucleotide signaling, the cellular specificity of PDE isoform expression, and the effects of PDE5 inhibitors on Leydig and Sertoli cell functions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!