Endoplasmic reticulum stress induces myostatin precursor protein and NF-kappaB in cultured human muscle fibers: relevance to inclusion body myositis.

Exp Neurol

Department of Neurology, USC Neuromuscular Center, University of Southern California Keck School of Medicine, Good Samaritan Hospital, 637 S. Lucas Avenue, Los Angeles, CA 90017, USA.

Published: April 2007

Sporadic-inclusion body myositis (s-IBM) is the most common progressive muscle disease of older persons. It leads to pronounced muscle fiber atrophy and weakness, and there is no successful treatment. We have previously shown that myostatin precursor protein (MstnPP) and myostatin (Mstn) dimer are increased in biopsied s-IBM muscle fibers, and proposed that MstnPP/Mstn increase may contribute to muscle fiber atrophy and weakness in s-IBM patients. Mstn is known to be a negative regulator of muscle fiber mass. It is synthesized as MstnPP, which undergoes posttranslational processing in the muscle fiber to produce mature, active Mstn. To explore possible mechanisms involved in Mstn abnormalities in s-IBM, in the present study we utilized primary cultures of normal human muscle fibers and experimentally modified the intracellular micro-environment to induce endoplasmic-reticulum (ER)-stress, thereby mimicking an important aspect of the s-IBM muscle fiber milieu. ER stress was induced by treating well-differentiated cultured muscle fibers with either tunicamycin or thapsigargin, both well-established ER stress inducers. Our results indicate for the first time that the ER stress significantly increased MstnPP mRNA and protein. The results also suggest that in our system ER stress activates NF-kappaB, and we suggest that MstnPP increase occurred through the ER-stress-activated NF-kappaB. We therefore propose a novel mechanism leading to the Mstn increase in s-IBM. Accordingly, interfering with pathways inducing ER stress, NF-kappaB activation or its action on the MstnPP gene promoter might prevent Mstn increase and provide a new therapeutic approach for s-IBM and, possibly, for muscle atrophy in other neuromuscular diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1909753PMC
http://dx.doi.org/10.1016/j.expneurol.2006.12.014DOI Listing

Publication Analysis

Top Keywords

muscle fiber
20
muscle fibers
16
s-ibm muscle
12
muscle
11
myostatin precursor
8
precursor protein
8
human muscle
8
body myositis
8
fiber atrophy
8
atrophy weakness
8

Similar Publications

Development of Electrospinning Setup for Vascular Tissue-Engineering Application with Thick-Hierarchical Fiber Alignment.

Tissue Eng Regen Med

January 2025

College of Materials Science and Engineering, Hunan University, Changsha, 410072, People's Republic of China.

Background: Tissue engineering holds promise for vascular repair and regeneration by mimicking the extracellular matrix of blood vessels. However, achieving a functional and thick vascular wall with aligned fiber architecture by electrospinning remains a significant challenge.

Methods: A novel electrospinning setup was developed that utilizes an auxiliary electrode and a spring.

View Article and Find Full Text PDF

Palmitate potentiates the SMAD3-PAI-1 pathway by reducing nuclear GDF15 levels.

Cell Mol Life Sci

January 2025

Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Unitat de Farmacologia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain.

Nuclear growth differentiation factor 15 (GDF15) reduces the binding of the mothers' against decapentaplegic homolog (SMAD) complex to its DNA-binding elements. However, the stimuli that control this process are unknown. Here, we examined whether saturated fatty acids (FA), particularly palmitate, regulate nuclear GDF15 levels and the activation of the SMAD3 pathway in human skeletal myotubes and mouse skeletal muscle, where most insulin-stimulated glucose use occurs in the whole organism.

View Article and Find Full Text PDF

The electrical conductivity of human tissues is a major source of uncertainty when modelling the interactions between electromagnetic fields and the human body. The aim of this study is to estimate human tissue conductivities in vivo over the low-frequency range, from 30 Hz to 1 MHz. Noninvasive impedance measurements, medical imaging, and 3D surface scanning were performed on the forearms of ten volunteer test subjects.

View Article and Find Full Text PDF

regenerates one head when cut, but how forces shaping the head are coordinated remains unclear. Soft compression of 's head-regenerating tissues induces the formation of viable, two-headed animals. Compression creates new topological defects in the supracellular orientational order of muscular actin fibers, associated with additional heads.

View Article and Find Full Text PDF

L-Carnitine is widely recognized for its involvement in lipid metabolism, but its effects on muscle quality and gut health in carp have not been well studied. The research aimed to investigate how L-carnitine influences muscle quality and intestinal health in high-fat-fed carp. The study was separated into four groups that received either the standard diet, a high-fat diet (HFD), or a HFD supplemented with 500 mg/kg L-carnitine (LLC), or a HFD supplemented with 1000 mg/kg L-carnitine (HLC) for 56 days.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!