In this report, we developed a new optical biosensor in connection with a gold-deposited porous anodic alumina (PAA) layer chip. In our sensor, we observed that the gold deposition onto the chip surface formed a "caplike" layer on the top of the oxide nanostructures in an orderly fashion, so we called this new surface formation a "gold-capped oxide nanostructure". As a result of its interferometric and localized surface plasmon resonance properties, the relative reflected intensity (RRI) at surface of the chip resulted in an optical pattern that was highly sensitive to the changes in the effective thickness of the biomolecular layer. We demonstrated the method on the detection of picomolar quantities of untagged oligonucleotides and the hybridization with synthetic and PCR-amplified DNA samples. The detection limit of our PAA layer chip was determined as 10 pM synthetic target DNA. The capability of observing both RRI increment and wavelength shift upon biomolecular interactions promises to make our chip widely applicable in various analytical tests.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac061909oDOI Listing

Publication Analysis

Top Keywords

localized surface
8
surface plasmon
8
plasmon resonance
8
paa layer
8
layer chip
8
surface
5
chip
5
label-free dna
4
dna biosensor
4
biosensor based
4

Similar Publications

Characterising patterns of genetic diversity including evidence of local adaptation is relevant for predicting and managing species recovering from overexploitation in the face of climate change. Red abalone (Haliotis rufescens) is a species of conservation concern due to recent declines from overharvesting, disease and climate change, resulting in the closure of commercial and recreational fisheries. Using whole-genome resequencing data from 23 populations spanning their entire range (southern Oregon, USA, to Baja California, MEX) we investigated patterns of population connectivity and genotype-environment associations that would reveal local adaptation across the mosaic of coastal environments that define the California Current System (CCS).

View Article and Find Full Text PDF

Bacterial flagellin, a potent intestinal innate immune activator, prevents murine rotavirus (RV) infection independent of adaptive immunity and interferons. The flagellin-induced immunity is mediated by Toll-like receptor (TLR5) and Nod-like receptor C4 (NLRC4), which elicit the production of interleukins 22 (IL-22) and IL-18, respectively. Here, we assessed whether a high abundance of flagellin at the time of vaccination would negatively affect the oral RV vaccine take.

View Article and Find Full Text PDF

The pro-tumor effects of mast cell (MC) in the tumor microenvironment (TME) are becoming increasingly clear. Recently, MC were shown to contribute to tumor malignancy by supporting the migration of tumor-associated macrophages (TAMs), suggesting a relationship with tumor immunity. In the current study, we aimed to examine the correlation between MC infiltration and neoadjuvant chemoradiotherapy (nCRT) response for locally advanced rectal cancer (LARC).

View Article and Find Full Text PDF

Human epidermal growth factor receptor 2 (HER2, also known as ERBB2) signaling promotes cell growth and differentiation, and is overexpressed in several tumor types, including breast, gastric and colorectal cancer. HER2-targeted therapies have shown clinical activity against these tumor types, resulting in regulatory approvals. However, the efficacy of HER2 therapies in tumors with HER2 mutations has not been widely investigated.

View Article and Find Full Text PDF

This study aims to synthesize a new localized drug delivery system of bioglass, polyvinyl alcohol (PVA), cellulose (CNC), and sodium alginate (SA) beads as a carrier for methotrexate (MTX) drugs for the treatment of osteosarcoma. Methotrexate /Bioglass-loaded Polyvinyl/Cellulose/Sodium alginate biocomposite beads were prepared via the dropwise method with different concentrations of (65%SiO-30%CaO- 5%PO) bioglass. Samples were named B0, S0, S1, S2, and S3, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!