Objective: To elucidate the cytotoxicity and mechanism of 23-O-acetylcimigenol-3-O-beta-D-xylopyranoside isolated from C. dahurica on HepG2 cells and to find the leading compound for new drug development.

Method: MTT, AO/EB staining observation, flow cytometry and western blot methods were used to study the cytotoxicity, morphological changes, cell cycle distribution and protein expression profile of 23-O-acetylcimigenol-3-O-beta-D-xylopyranoside on HepG2 cells.

Result: 23-O-acetylcimigenol-3-O-beta-D-xylopyranoside could inhibit the proliferation of HepG2 cells with IC50 at 16 micromol x L(-1), and could also induce apoptosis and G2-M cell cycle arrest. Further study demonstrated that the compound could cleavage PARP, regulate protein expression of bcl-2 family and decrease the expression of cdc 2 and cyclin B.

Conclusion: 23-O-acetylcimigenol-3-O-beta-D-xylopyranoside exerts its cytotoxicity on HepG2 cells via apoptosis and G2-M arrest. In addition, caspases family activation, regulation of protein expression of bcl-2 family and down regulation of cdc 2 and cyclin B were involved in apoptosis and G2-M arrest induced by it.

Download full-text PDF

Source

Publication Analysis

Top Keywords

hepg2 cells
12
protein expression
12
apoptosis g2-m
12
mechanism 23-o-acetylcimigenol-3-o-beta-d-xylopyranoside
8
23-o-acetylcimigenol-3-o-beta-d-xylopyranoside hepg2
8
cell cycle
8
expression bcl-2
8
bcl-2 family
8
cdc cyclin
8
g2-m arrest
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!