Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The ability of Hypocrea jecorina (Trichoderma reesei) to grow on lactose strongly depends on the formation of an extracellular glycoside hydrolase (GH) family 35 beta-galactosidase, encoded by the bga1 gene. Previous studies, using batch or transfer cultures of pregrown cells, had shown that bga1 is induced by lactose and d-galactose, but to a lesser extent by galactitol. To test whether the induction level is influenced by the different growth rates attainable on these carbon sources, bga1 expression was compared in carbon-limited chemostat cultivations at defined dilution (=specific growth) rates. The data showed that bga1 expression by lactose, d-galactose and galactitol positively correlated with the dilution rate, and that galactitol and d-galactose induced the highest activities of beta-galactosidase at comparable growth rates. To know more about the actual inducer for beta-galactosidase formation, its expression in H. jecorina strains impaired in the first steps of the two d-galactose-degrading pathways was compared. Induction by d-galactose and galactitol was still found in strains deleted in the galactokinase-encoding gene gal1, which is responsible for the first step of the Leloir pathway of d-galactose catabolism. However, in a strain deleted in the aldose/d-xylose reductase gene xyl1, which performs the reduction of d-galactose to galactitol in a recently identified second pathway, induction by d-galactose, but not by galactitol, was impaired. On the other hand, induction by d-galactose and galactitol was not affected in an l-arabinitol 4-dehydrogenase (lad1)-deleted strain which is impaired in the subsequent step of galactitol degradation. These results indicate that galactitol is the actual inducer of Bga1 formation during growth on d-galactose in H. jecorina.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1099/mic.0.2006/001602-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!