Oncology drug discovery is, by definition, a target-rich enterprise. High-throughput screening (HTS) laboratories have supported a wide array of molecularly targeted and chemical genomic approaches for anticancer lead generation, and the number of hits emerging from such campaigns has increased dramatically. Although automation of HTS processes has eliminated primary screening as a bottleneck, the demands on secondary screening in appropriate cell-based assays have increased concomitantly with the numbers of hits delivered to therapeutic area laboratories. The authors describe herein the implementation of a novel platform using off-the-shelf solutions that have allowed them to efficiently characterize hundreds of HTS hits using a palette of Western blot-based pharmacodynamic assays. The platform employs a combination of a flatbed bufferless SDS-PAGE system, a dry ultra-rapid electroblotting apparatus, and a highly sensitive and quantitative infrared imaging system. Cumulatively, this platform has significantly reduced the cycle time for HTS hit evaluation. In addition, the routine use of this platform has resulted in higher quality data that have allowed the development of structure-activity databases that have tangibly improved lead optimization. The authors describe in detail the application of this platform, designated the Accelerated Pharmaco-Dynamic Profiler (APDP), to the annotation of inhibitors of 2 attractive oncology targets, BRAF kinase and Hsp90.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/1087057106297787 | DOI Listing |
J Am Chem Soc
January 2025
State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China.
Carbon monoxide (CO) gas therapy, as an emerging therapeutic strategy, is promising in tumor treatment. However, the development of a red or near-infrared light-driven efficient CO release strategy is still challenging due to the limited physicochemical characteristics of the photoactivated carbon monoxide-releasing molecules (photoCORMs). Here, we discovered a novel photorelease CO mechanism that involved dual pathways of CO release via photosensitization.
View Article and Find Full Text PDFClin Cancer Res
January 2025
ACTREC, Tata Memorial Centre, Navi Mumbai, Maharashtra, India.
Purpose: Identifying therapeutic targets for Signet Ring Cell Carcinoma (SRCC) of the colon and rectum is a clinical challenge due to the lack of Patient-Derived Organoids (PDO) or Xenografts (PDX). We present a robust method to establish PDO and PDX models to answer address this unmet need. We demonstrate that these models identify novel therapeutic strategies targeting therapy resistance and peritoneal metastasis.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Xi'an Jiaotong University, School of Microelectronics & State Key Laboratory for Mechanical Behavior of Materials, Xi'an 710049, China.
The bismuth monolayer has recently been experimentally identified as a novel platform for the investigation of two-dimensional single-element ferroelectric system. Here, we model the potential energy surface of a bismuth monolayer by employing a message-passing neural network and achieve an error smaller than 1.2 meV per atom.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas 66506, United States.
Cell-penetrating peptides (CPPs) are short peptides capable of penetrating cell membranes, making them valuable for drug delivery and intracellular targeting. Accurate prediction of CPPs can streamline experimental validation in the lab. This study aims to assess pretrained protein language models (pLMs) for their effectiveness in representing CPPs and develop a reliable model for CPP classification.
View Article and Find Full Text PDFBiochem Cell Biol
January 2025
Department of Histology and Embryology, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China.
Idiopathic pulmonary fibrosis (IPF) is a progressive and irreversible lung disease with high mortality and limited treatment options. While single-dose bleomycin-induced models are commonly used to investigate the pathogenesis of IPF, they fail to adequately replicate the complex pathological features in human patients, thereby hindering comprehensive investigations. Previous studies utilizing repetitive bleomycin injections have demonstrated a closer resemblance to human IPF pathology; however, the time- and resource-intensive nature of this approach presents significant drawbacks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!