The molecular basis for cyclopiazonic acid inhibition of the sarcoplasmic reticulum calcium pump.

J Biol Chem

Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada. Electronic address:

Published: March 2007

The sarcoplasmic reticulum Ca(2+)-ATPase is essential for calcium reuptake in the muscle contraction-relaxation cycle. Here we present structures of a calcium-free state with bound cyclopiazonic acid (CPA) and magnesium fluoride at 2.65 A resolution and a calcium-free state with bound CPA and ADP at 3.4A resolution. In both structures, CPA occupies the calcium access channel delimited by transmembrane segments M1-M4. Inhibition of Ca(2+)-ATPase is stabilized by a polar pocket that surrounds the tetramic acid of CPA and a hydrophobic platform that cradles the inhibitor. The calcium pump residues involved include Gln(56), Leu(61), Val(62), and Asn(101). We conclude that CPA inhibits the calcium pump by blocking the calcium access channel and immobilizing a subset of transmembrane helices. In the E2(CPA) structure, ADP is bound in a distinct orientation within the nucleotide binding pocket. The adenine ring is sandwiched between Arg(489) of the nucleotide-binding domain and Arg(678) of the phosphorylation domain. This mode of binding conforms to an adenine recognition motif commonly found in ATP-dependent proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M611653200DOI Listing

Publication Analysis

Top Keywords

calcium pump
12
cyclopiazonic acid
8
sarcoplasmic reticulum
8
calcium-free state
8
state bound
8
acid cpa
8
calcium access
8
access channel
8
calcium
6
cpa
5

Similar Publications

Nimodipine is the current gold standard in the treatment of subarachnoid hemorrhage, as it is the only known calcium channel blocker that has been proven to improve neurological outcomes. In addition, nimodipine exhibits neuroprotective properties in vitro under various stress conditions. Furthermore, clinical studies have demonstrated a neuroprotective effect of nimodipine after vestibular schwannoma surgery.

View Article and Find Full Text PDF

The electrophysiological mechanisms underlying melatonin's actions and the electrophysiological consequences of superimposed therapeutic hypothermia (TH) in preventing cardiac ischemia-reperfusion (IR) injury-induced arrhythmias remain largely unknown. This study aimed to unveil these issues using acute IR-injured hearts. Rabbits were divided into heart failure (HF), HF+melatonin, control, and control+melatonin groups.

View Article and Find Full Text PDF

A key molecular dysfunction in heart failure is the reduced activity of the cardiac sarcoplasmic reticulum Ca2+-ATPase (SERCA2a) in cardiac muscle cells. Reactivating SERCA2a improves cardiac function in heart failure models, making it a validated target and an attractive therapeutic approach for heart failure therapy. However, finding small-molecule SERCA2a activators is challenging.

View Article and Find Full Text PDF

While acute exercise affects sarcoplasmic reticulum (SR) function, the impact of resistance training remains unclear. The purpose of the present study was to investigate SR Ca handling plasticity in response to moderate- and high-volume strength training in elite rowers. Twenty elite male (n = 12) and female (n = 8) rowers performed three weekly strength training sessions for 8 weeks and were randomly allocated to either perform 3 sets (3-SET) or progressive increase from 5 to 10 sets (10-SET) of 10 repetitions during the training period.

View Article and Find Full Text PDF

Protective role of triiodothyronine in sepsis‑induced cardiomyopathy through phospholamban downregulation.

Int J Mol Med

March 2025

Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing 400014, P.R. China.

Sepsis is often a cause of mortality in patients admitted to the intensive care unit. Notably, the heart is the organ most susceptible to the impact of sepsis and this condition is referred to as sepsis‑induced cardiomyopathy (SIC). Low triiodothyronine (T3) syndrome frequently occurs in patients with sepsis, and the heart is one of the most important target organs for the action of T3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!