Background & Aims: We report a patient of Indian descent with parental consanguinity, who developed 10 carcinomas and 35 adenomatous polyps at age 23 and duodenal adenocarcinoma at age 25. He also had dysmorphic features, mental retardation, and café-au-lait spots but no brain tumor. We aimed to establish his molecular diagnosis.

Methods: Germ-line screening for APC and MYH/MUTYH mutations was normal as was immunohistochemistry for MLH1 and MSH2 proteins. Investigation by array-comparative genomic hybridization revealed deletion of a small region on chromosome 7. Using polymerase chain reaction, this region was refined to a 400-kilobase deletion, which included exons 9-15 of the PMS2 gene, and all coding regions of oncomodulin, TRIAD3, and FSCN1.

Results: The deletion was confirmed as homozygous, and both parents were carriers. Immunohistochemistry showed absent PMS2 expression in all tumors and normal tissue. Most tumors showed microsatellite instability, more marked at dinucleotide than mononucleotide repeats. The tumors harbored no somatic mutations in APC, BRAF, AXIN2, or beta-catenin, but KRAS2 and TGFBR2 mutations were found.

Conclusions: Our patient represents a novel phenotype for homozygous PMS2 mutation and perhaps the most severe colorectal cancer phenotype-in terms of numbers of malignancies at an early age-described to date. PMS2 mutations-and perhaps other homozygous mismatch repair mutations-should be considered in any patient presenting with multiple gastrointestinal tumors, since our patient could not be distinguished clinically from cases with attenuated familial adenomatous polyposis or MUTYH-associated polyposis.

Download full-text PDF

Source
http://dx.doi.org/10.1053/j.gastro.2006.11.043DOI Listing

Publication Analysis

Top Keywords

homozygous pms2
8
severe colorectal
8
colorectal cancer
8
homozygous
4
deletion
4
pms2 deletion
4
deletion severe
4
cancer multiple
4
multiple adenoma
4
adenoma phenotype
4

Similar Publications

interference leading to erroneous identification of a pathogenic variant in Black patients.

Genet Med Open

June 2024

Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.

This study investigates the frequency of a clinically reported variant in , NM_000535.7:c.2523G>A p.

View Article and Find Full Text PDF

Constitutional mismatch repair deficiency (CMMRD) is a rare childhood cancer predisposition syndrome that results from biallelic germline mutations in one of the four MMR genes, MLH1, MSH2, MSH6, or PMS2. This syndrome is characterized by a broad spectrum of early-onset malignancies, including hematologic malignancies, colorectal malignancies, brain tumors, and other malignancies. It is common to have more than one malignancy in an individual diagnosed with CMMRD.

View Article and Find Full Text PDF

Pediatric high-grade glioma (pHGG) is highly malignant central nervous system tumor and constitute 10% of the pediatric gliomas. Effective treatment needs a functioning multi-disciplinary team including pediatric neuro oncologist, neurosurgeon, neuroradiologist, neuropathologist and radiation oncologist. Despite surgical resection, radiotherapy and chemotherapy, most HGG will recur resulting in early death.

View Article and Find Full Text PDF

Hereditary cancer predisposition accounts for more than 10% of all cancers in pediatric age group and this is increasingly recognized as an important entity because of modern sequencing techniques. We report a rare association of two concurrent cancer predisposition syndromes, in a young child who presented with concurrent malignancies including Wilms tumor, myelodysplastic syndrome and an indeterminate brain lesion who succumbed to his disease. Multiple synchronous malignancies present difficult clinical and psycho-social challenges which need to be carefully addressed in the setting of a multi-disciplinary team approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!