Struvite (MgNH(4)PO(4).6H(2)O) precipitation eliminates phosphate efficiently from urine, a small but highly concentrated stream in the total flux of domestic wastewater. Precipitation experiments with hydrolysed urine evaluated the solubility product of struvite. The stored and fully hydrolysed urine had an ionic strength of between 0.33 and 0.56M and required the estimation of activity coefficients. From our data, we identified the Davies approximation with the two constants A=0.509 and B=0.3 as agreeing best with our laboratory results. The standard solubility product K(s)(0)=f(1)[NH4(+)]f(2)[Mg2+]f(3)[PO(4)(3-)] ([ ]=concentration of the species; f(x)=corresponding activity coefficient) of struvite in urine was found to be 10(-13.26+/-0.057) at 25 degrees C and the enthalpy of struvite formation DeltaH was 22.6(+/-1.1) kJmol(-1). The equilibrium calculations required the following dissolved complexes: [MgCO(3)](aq), [MgHCO(3)](+), [MgPO(4)](-), [NH4HPO4and [NaHPO(4)](-) and to a lesser extent [MgSO(4)](aq) and [NH(4)SO(4)](-). Organic complexes do not seem to influence the solubility product substantially. For practical purposes, a conditional solubility product K(s)(cond)=[Mg(aq)].[NH(4)(+)+NH(3)].[P(ortho)]=10(-7.57)M(3) was derived to calculate struvite solubility in urine at 25 degrees C, pH=9.0 and ionic strength I=0.4M directly from measured concentrations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2006.11.046 | DOI Listing |
Sci Rep
December 2024
College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, 028000, China.
The aim of this experiment was to investigate the effects of rumen fluid and molasses on the nutrient composition, fermentation quality, and microflora of Caragana korshinskii Kom. The trial included four treatments: a control group (CK) without additives and experimental groups supplemented with 7% rumen fluid (R), 4% molasses (M), and 7% rumen fluid + 4% molasses (RM). 15 days and 60 days of ensiling.
View Article and Find Full Text PDFIran J Biotechnol
July 2024
Department of Biotechnology, Sangmyung University, 20 Hongjimun 2-gil, Jongno-gu, Seoul 03016, Korea.
Background: Recombinant proteins produced in the cell factories are used in biological research, pharmaceutical production, and biochemical and agricultural applications. Molecular chaperones, such as heat shock proteins (Hsps), are co-expressed with recombinant proteins to enhance their yield, stability, and activity. When () is used as a cell factory, Hsps are the frequently used co-expression partners.
View Article and Find Full Text PDFMol Neurodegener
December 2024
German Center for Neurodegenerative Diseases (LMU), Klinikum, Germany.
Background: The prion-like spreading of Tau pathology is the leading cause of disease progression in various tauopathies. A critical step in propagating pathologic Tau in the brain is the transport from the extracellular environment and accumulation inside naïve neurons. Current research indicates that human neurons internalize both the physiological extracellular Tau (eTau) monomers and the pathological eTau aggregates.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:
Dietary fiber (DF) is an indigestible carbohydrate in plant foods that supports various physiological functions. This study aimed to extract the soluble and insoluble dietary fiber (DF) from the curry leaves and investigate their physicochemical properties as well as their functional role in the homeostasis of the gut microbiome. The study observed that insoluble-DF (IDF) yielded higher amounts than soluble-DF (SDF) across alkali, acid, and water extraction methods.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China. Electronic address:
Marinating is a crucial stage in meat processing. However, traditional marinating takes a long time and is prone to nutrient loss. Pulsed electric field (PEF) technology, an innovative non-thermal processing method, has been shown to improve the efficiency of meat marinating.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!