Objectives: Nitric oxide (NO) synthesis by NO synthases (NOS) requires oxygen. However, although counterintuitive, NO synthesis is increased in ischemic myocardium. Accordingly, mechanisms independent of the NOS pathway have been suggested to contribute to NO synthesis during ischemia. NO initiates detrimental as well as protective mechanisms in a concentration-dependent manner, thus aggravating or improving the outcome of ischemia. The aim of this study was to measure in situ interstitial NO concentrations in parallel to infarct size in anaesthetized pigs subjected to myocardial ischemia/reperfusion. The contribution of NOS-independent pathways to NO synthesis was studied using NOS blockade.

Methods: Interstitial NO measurements, based on microdialysis combined with the oxyhemoglobin method, were made during 90 min of moderate or severe ischemia and subsequent reperfusion. To examine the effect of NOS inhibition, an initial 30-min ischemic period was followed 60 min later by a second 30-min ischemic period with intracoronary infusion of S-ethyl-isothiourea.

Results: During ischemia, the interstitial NO concentration increased for about 30 min and then remained constant at this elevated level. The increase in NO concentration by 253+/-82 nmol/L during moderate and 565+/-169 nmol/L during severe ischemia correlated inversely with subendocardial blood flow (r=-0.76). NOS inhibition increased coronary arterial pressure and decreased the interstitial basal NO concentration and tissue nitrite content. However, it did not diminish the increase in interstitial NO concentration during ischemia.

Conclusion: NOS-independent pathways are significantly involved in NO synthesis during myocardial ischemia.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cardiores.2006.12.020DOI Listing

Publication Analysis

Top Keywords

myocardial ischemia
8
nos-independent pathways
8
severe ischemia
8
30-min ischemic
8
ischemic period
8
interstitial concentration
8
ischemia
7
interstitial
6
synthesis
5
microdialysis-based analysis
4

Similar Publications

Clonal haematopoiesis of indeterminate potential and risk of microvascular complications among individuals with type 2 diabetes: a cohort study.

Diabetes

January 2025

Department of Big Data in Health Science, Zhejiang University School of Public Health and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.

Clonal haematopoiesis of indeterminate potential (CHIP) is associated with macrovascular diseases, including coronary artery disease and stroke. However, the effects of CHIP on microvascular complication have not been evaluated in individuals with type 2 diabetes (T2D). This study included 20,712 T2D participants without prevalent diabetic microvascular complication (DMCs) and hematologic malignancy at baseline.

View Article and Find Full Text PDF

Importance: Multisystem inflammatory syndrome in children (MIS-C) is a life-threatening complication of COVID-19 infection. Data on midterm outcomes are limited.

Objective: To characterize the frequency and time course of cardiac dysfunction (left ventricular ejection fraction [LVEF] <55%), coronary artery aneurysms (z score ≥2.

View Article and Find Full Text PDF

To investigate if progression of coronary artery calcification (CAC) in patients with systemic lupus erythematosus (SLE) is associated with renal and traditional cardiovascular risk factors as well as incidence of myocardial infarctions. CAC progression was evaluated by cardiac computed tomography (CT) at baseline and after 5 years. Multivariable Poisson regression was applied to investigate associations between CAC progression and baseline values for traditional cardiovascular risk factors, CAC, SLE disease duration, lupus nephritis, and renal function.

View Article and Find Full Text PDF

Heart failure is a prevalent global health issue. Heart failure with preserved ejection fraction (HFpEF), which already represents half of all heart cases worldwide, is projected to further increase, driven by aging populations and rising cardiovascular risk factors. Effective therapies for HFpEF remain limited, particularly due to its pathophysiological heterogeneity and incomplete understanding of underlying pathomechanisms and implications.

View Article and Find Full Text PDF

Coronary artery calcification (CAC) is a key marker of coronary artery disease (CAD) but is often underreported in cancer patients undergoing non-gated CT or PET/CT scans. Traditional CAC assessment requires gated CT scans, leading to increased radiation exposure and the need for specialized personnel. This study aims to develop an artificial intelligence (AI) method to automatically detect CAC from non-gated, freely-breathing, low-dose CT images obtained from positron emission tomography/computed tomography scans.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!