The radioactive concentrations of (18)F, (88)Y and (152)Eu solutions and the activity of (222)Rn gas ampoules are measured using a primary method involving 4pigamma NaI(Tl) integral counting with a well-type NaI(Tl) detector and efficiencies computed by Monte Carlo simulations. The simulations use the GEANT code coupled with a routine (sch2for), which generates randomly the decay paths and emissions depending on the decay scheme parameters. The resulting radioactive concentrations of (88)Y, (152)Eu and (18)F are found to agree with those measured with other primary measurement methods, such as 4pi (beta, e, X)-gamma coincidence counting or liquid scintillation counting. Results of the determination of the activity of (222)Rn gas ampoules by this method also match the results of an absolute standardisation technique in which radon is condensed onto a cold surface and its alpha-emissions are detected through an accurately specified solid angle.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.apradiso.2006.10.009DOI Listing

Publication Analysis

Top Keywords

4pigamma naitl
8
monte carlo
8
radioactive concentrations
8
88y 152eu
8
activity 222rn
8
222rn gas
8
gas ampoules
8
measured primary
8
primary activity
4
activity measurements
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!