A test road constructed with municipal solid waste incineration (MSWI) bottom ash was monitored over a period of 36 months. Using chemical and toxicological characterisation, the environmental impact of leachates from bottom ash was evaluated and compared with leachates from gravel used as reference. Initial leaching of Cl, Cu, K, Na, NH4-N and TOC from bottom ash was of major concern. However, the quality of the bottom ash leachate approached that of the gravel leachate with time. Leachates from the two materials were compared regarding the concentration of pollutants using multivariate data analyses (MVDA). A standardized luminescent bacteria assay using Vibrio fischeri did not show any toxicity, most likely because saline contamination can mask the toxic response and stimulate luminescence in these marine bacteria. A mung bean assay using Phaseolus aureus revealed that the toxicity of bottom ash leachate collected at the very beginning of the experimental period (October 2001 and May 2002) might be attributed to the following components and their respective concentrations in mg l(-1): Al (34.2-39.2), Cl (2914-16,446), Cu (0.48-1.92), K (197-847), Na (766-4180), NH4-N (1.80-8.47), total-N (12.0-18.5), and TOC (34.0-99.0). The P. aureus assay was judged as a promising environmental tool in assessing the toxicity of bottom ash leachate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.wasman.2006.11.008 | DOI Listing |
Anal Chim Acta
February 2025
School of Electric Power Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, China; Guangdong Province Key Laboratory of Efficient and Clean Energy Utilization, Guangzhou, Guangdong, 510641, China. Electronic address:
Background: Rapid and accurate detection of the biomass potassium (K) content in biomass is crucial for mitigating ash deposition and fouling issues in biomass fuel combustion processes. Laser-induced breakdown spectroscopy (LIBS) offers a promising approach for rapid analysis of biomass elemental. However, the accuracy of LIBS detection is susceptible to chemical matrix effects.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China.
Gasification slag is the solid waste produced in the process of coal gasification. China produces approximately 30 million tons of gasification slag every year, which urgently needs to be recycled in an efficient and sustainable way. This paper discusses the feasibility of using gasification slag as a supplementary cementitious material (SCM).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Civil Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
Fly ash (FA) is a consequence of burning coal and is widely used in construction because of its pozzolanic qualities, which increase the strength and longevity of materials. Graphene oxide (GO) is a functionalized version of graphene with low electrical conductivity, high mechanical strength, and a large surface area. By examining the behavior of fly ash and GO composites at high temperatures, new materials with improved mechanical and functional qualities that are appropriate for a range of industrial uses can be created.
View Article and Find Full Text PDFToxics
December 2024
State Key Laboratory of Coal Resources and Safe Mining & College of Geosciences and Surveying Engineering, China University of Mining and Technology, Beijing 100083, China.
Xuanwei and the neighboring Fuyuan (XF) counties in Yunnan Province have the highest lung cancer incidence rates in China. Previous studies suggest that the nano-minerals released during the combustion of locally sourced "smoky" (bituminous) coal are the primary contributors to these elevated cancer rates. The coal ash generated during combustion predominantly consists of nano-minerals, which can be resuspended into the atmosphere during routine ash-handling activities.
View Article and Find Full Text PDFMolecules
December 2024
Faculty of Non-Ferrous Metals, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland.
Gallium, a critical and strategic material for advanced technologies, is anomalously enriched in certain coal deposits and coal by-products. Recovering gallium from solid residues generated during coal production and utilization can yield economic benefits and positive environmental gains through more efficient waste processing. This systematic literature review focuses on gallium concentrations in coal and its combustion or gasification by-products, modes of occurrence, gallium-hosting phases, and hydrometallurgical recovery methods, including pretreatment procedures that facilitate metal release from inert aluminosilicate minerals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!