Anthracene (AC) is a non-mutagenic and non-carcinogenic, low-molecular-weight polycyclic aromatic hydrocarbon present in the environment. Its toxicity can be dramatically increased after solar-light exposure. Biotransformation capacities of AC by Tetrahymena pyriformis and a selection of eight micromycetes were studied, and the ability of these microorganisms to detoxify the polluted ecosystems was assessed. We showed that T. pyriformis was able to accumulate high amounts of AC without any transformation. In contrast, the fungi Cunninghamella elegans, Absidia fusca, Absidia cylindrospora, Rhodotorula glutinis, and Aspergillus terreus were able to transform AC with a high efficiency. Cytotoxicity assays conducted on HeLa cells and T. pyriformis showed that crude extract from A. fusca culture medium obtained after AC biotransformation was not toxic. For A. fusca and A. cylindrospora, 1-4 dihydroxyanthraquinone was shown to be the major product during the biotransformation process. This compound seemed to be a dead-end metabolite at least for the Absidia strains. The cytotoxicity of 1-4 dihydroxyanthraquinone was higher than that of AC to T. pyriformis but lower to HeLa cells. On the whole our results showed that the microorganisms studied were all able to decontaminate an AC-polluted ecosystem, either by accumulating or transforming the compound. A possible detoxification process resulting from AC biotransformation can be considered only using the human cell model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2006.11.006 | DOI Listing |
Sci Total Environ
February 2025
Department of Life Sciences, Whitelands College, Roehampton University, London SW15 4JD, United Kingdom; Networks Unit, IMT School for Advanced Studies Lucca, Italy.
Microplastic particles are ubiquitous in aquatic environments and are considered a major threat to the large range of heterotrophic organisms that involuntarily consume them. However, there is current uncertainty around the mechanisms underpinning microplastic uptake by aquatic consumers and the consequences for both the fate of the microplastics and the growth potential of consumer populations. We performed a feeding experiment, exposing a model freshwater ciliate, Tetrahymena pyriformis, to six different microplastic concentrations and measured microplastic uptake and population growth over the course of several generations.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Québec H9X 3V9, Canada; Centreau - Centre québécois de recherche sur la gestion de l'eau, Université Laval, Québec, Québec, Canada; Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Université de Montréal, Faculté de Médecine Vétérinaire, Saint-Hyacinthe, Québec, Canada. Electronic address:
Copper is frequently found in drinking water due to its presence in the natural environment and the widespread usage of copper pipes. This toxic metal has a well-known antimicrobial activity, an activity harnessed in copper‑silver ionization (CSI) to eliminate the opportunistic pathogen Legionella pneumophila from engineered water systems. Despite utilizing the antimicrobial properties of copper in Legionella control, little is known about how copper containing environments affect L.
View Article and Find Full Text PDFVet Parasitol
November 2024
Laboratory of Protozoology, Harbin Normal University, Harbin 150025, China. Electronic address:
Vet Parasitol
January 2025
Centers for Fish Disease Control and Prevention, Dalian Ocean University, Dalian, China. Electronic address:
Tetrahymeniasis is a ciliate disease that presents significant economic challenges for the aquaculture industry. Previous research has shown promising control effects on Tetrahymena pyriformis using flavonoids from Psoralea corylifolia (P. corylifolia), but their high cost hinders practical application.
View Article and Find Full Text PDFEnviron Health (Wash)
April 2024
National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, China.
The widespread use of chemical products inevitably brings many side effects as environmental pollutants. Toxicological assessment of compounds to aquatic life plays an important role in protecting the environment from their hazards. However, animal testing approaches for aquatic toxicity evaluation are time-consuming, expensive, and ethically limited, especially when there are a great number of compounds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!