New unsymmetrical [N2O2] tetradentate Schiff base complexes of Ni(II), Cu(II), Zn(II), and VO(II) were synthesized by template condensation of the tetradentate precursor 1-phenylbutane-1,3-dione mono-S-methylisothiosemicarbazone with o-hydroxybenzaldehyde or its 5-phenylazo derivative. They were characterized by elemental analysis, IR, UV-vis, electron spin resonance, and NMR spectroscopy, mass spectrometry, and magnetic measurements. The crystal structures of five of them have been determined by X-ray diffraction using, in some cases, synchrotron radiation. These compounds are characterized by a large thermal stability; their decomposition temperatures range from 240 up to 310 degrees C. Complexes with the phenylazo substituent were found to possess a large second-order nonlinear optical (NLO) response, as determined both by measurements of solution-phase direct current electric-field-induced second harmonic generation and by theoretical time-dependent density functional theory (TDDFT) calculations. The molecular hyperpolarizability was found to decrease in the order Zn(II) > Cu(II) > Ni(II) approximately VO(II). The active role of the metal in determining the NLO properties of the complexes was shown through an analysis of their UV-vis spectra, which revealed the presence of metal-to-ligand (in closed-shell complexes) and ligand-to-metal (in open-shell complexes) charge-transfer bands together with intra-ligand charge-transfer transitions. Assignment of the bands was based on the analysis of the TDDFT computed spectra.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic062035rDOI Listing

Publication Analysis

Top Keywords

electric-field-induced second
8
second harmonic
8
niii cuii
8
cuii znii
8
znii voii
8
analysis uv-vis
8
complexes
6
structural spectral
4
spectral electric-field-induced
4
harmonic theoretical
4

Similar Publications

Electroisomerization blinking of an azobenzene derivative molecule.

Nanotechnology

January 2025

University Lille, CNRS, University Polytechnique Hauts-de-France, UMR 8520-IEMN-Institut d'Electronique de Microélectronique et de Nanotechnologie, F-59000 Lille, France.

We report here the reversibility and bistability of the switching behavior in an azobenzene derivative induced by the bias applied by a scanning-tunneling microscopy (STM) tip, at low temperature and in ultra-high vacuum environment. Thisto-andto-switching were observed during STM imaging in either polarity at +2 V or -2 V, on a sub-second time scale. This results in a blinking effect visible on STM images, corresponding to the reversible switching of the azobenzene molecule under the applied STM bias through an electric field induced process.

View Article and Find Full Text PDF

Electric field induced second harmonic (EFISH) measurements are performed on thin films of arsenic sulfide deposited on chromium coated fused silica substrates by thermal evaporation of amorphous AsS bulk material. EFISH allows to widely tune the second-order optical susceptibility (χ). An observed shift of the minimum of the second harmonic generation (SHG) intensity away from 0 V reveals a non-EFISH bulk χ, which is unexpected for amorphous materials.

View Article and Find Full Text PDF
Article Synopsis
  • The research evaluates Al-doped ZnO (AZO) as a transparent gate material, finding it enhances quantum dot emission intensity over traditional Ti gates, while also noting issues with charge artifacts at higher gate voltages.
  • It also explores switching behaviors in GaAs cone-shell quantum dots (CSQDs) under vertical electric fields, observing localized charge carrier densities and minimal interference from interface charges at low voltages.
  • The findings reveal a new asymmetric strong-weak confinement in quantum dots, where the hole transitions from strong to weak confinement while the electron remains strongly confined, supporting theoretical predictions regarding hole probability densities.
View Article and Find Full Text PDF

Electro-optically Modulated Nonlinear Metasurfaces.

Nano Lett

November 2024

The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Applied Physics Institute, Nankai University, Tianjin 300071, People's Republic of China.

Article Synopsis
  • Electrically reconfigurable nonlinear metasurfaces allow for dynamic control of second-harmonic generation (SHG), leading to innovative uses in signal processing, light switching, and sensing.
  • Traditional methods have limitations due to weak SHG responses in metals and constraints in quantum well systems.
  • A new approach using lithium niobate (LN) combines the electro-optic effect with SHG, achieving an 11.3% modulation depth, which enhances the potential for tunable nonlinear light sources and advanced photonic applications.
View Article and Find Full Text PDF

We study the dynamical response functions relevant for electric field induced two-dimensional (2D) coherent nonlinear optical spectroscopy in a Kitaev magnet at finite temperature. We show that these response functions are susceptible to both types of fractional quasiparticles of this quantum spin-liquid, i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!