The synthesis, optical and electrochemical properties, and X-ray characterization of two thiazole derivatives capped by ferrocenyl groups (5 and 7) and their model compounds with one ferrocenyl, either at 2 or 5 position of the mono- or bis-thiazolyl rings (3, 9, 11, and 14), are presented. Bisferrocenyl thiazole 5 forms the mixed-valence species 5*+ by partial oxidation which, interestingly, shows an intramolecular electron-transfer phenomenon. Moreover, the reported heteroaromatic compounds show selective ion-sensing properties. Thus, ferrocenylthiazoles linked across the 5 position of the heteroaromatic ring are selective chemosensors for Hg2+ and Pb2+ metal ions; 5-ferrocenylthiazole 3 operates through two channels, optical and redox, for Hg2+ and only optical for Pb2+, whereas 1,1'-bis(thiazolyl)ferrocene 14 is only an optical sensor for both metal ions. Moreover, complex 3 behaves as an electrochemically induced switchable chemosensor because of the low metal-ion affinity of the oxidized 3*+ species. On the other hand, ferrocenylthiazole 9, in which the heterocyclic ring and the ferrocene group are linked across the 2 position, is a selective redox sensor for Hg2+ metal ions, and it responds optically, as does bis(thiazolyl)ferrocene 11, to a narrow range of cations (Zn2+, Cd2+, Hg2+, Ni2+, and Pb2+). Finally, bis(ferrocenyl)thiazole 5 is a dual optical and redox sensor for Zn2+, Cd2+, Hg2+, Ni2+, and Pb2+, whereas bis(ferrocenyl) compound 7, bearing a bis(thiazole) unit as a bridge, is only a chromogenic sensor for Zn2+, Cd2+, Hg2+, Ni2+, and Pb2+. The experimental data and conclusions about both the electronic and ion-sensing properties are supported by DFT calculations which show, in addition, an unprecedented intramolecular electron-transfer reorganization after the first one-electron oxidation of compound 5.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic061803b | DOI Listing |
Sensors (Basel)
December 2024
Department of Chemistry and Biochemistry, Institute of Fluorescence, University of Maryland, Baltimore County, 701 E Pratt St, Baltimore, MD 21202, USA.
We report on the detection and quantification of aqueous DNA by a fluorophore-induced plasmonic current (FIPC) sensing method. FIPC is a mechanism described by our group in the literature where a fluorophore in close proximity to a plasmonically active metal nanoparticle film (MNF) is able to couple with it, when in an excited state. This coupling produces enhanced fluorescent intensity from the fluorophore-MNF complex, and if conditions are met, a current is generated in the film that is intrinsically linked to the properties of the fluorophore in the complex.
View Article and Find Full Text PDFFront Med Technol
November 2024
Department of Biochemical Engineering, School of Chemical Engineering, Harcourt Butler Technical University, Kanpur, India.
Carbon quantum dots (CQDs) have shown considerable interest in multiple fields including bioimaging, biosensing, photocatalysis, ion sensing, heavy metal detection, and therapy due to highly tunable photoluminescence and good photostability. Apart from having optical properties CQDs offer several advantages such as low toxicity, environmental friendliness, affordability, and simple synthesis methods. Furthermore, by modifying their surface and functionality, it's possible to precisely control their physical and chemical characteristics.
View Article and Find Full Text PDFBeilstein J Nanotechnol
December 2024
Nanomaterial Toxicology Laboratory, Drug and Chemical Toxicology Group, Food, Drug and Chemical, Environment and Systems Toxicology (FEST) Divison, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, India.
ʟ-Carnosine is a dipeptide with notable antioxidant, antiglycation, metal chelating, and neuroprotective properties. Despite its many biological roles, applying ʟ-carnosine as a capping agent in nanoparticle synthesis has remained underexplored. This study explores the potential of ʟ-carnosine in synthesizing tunable plasmonic silver nanoparticles (ʟ-car-AgNPs).
View Article and Find Full Text PDFRSC Adv
November 2024
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 P. R. China.
Chemistry
January 2025
School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
The integration of multiple functions within a single fluorescent molecule provides a promising platform for developing versatile, efficient, and cost-effective materials with enhanced performance across diverse applications. In this study, we introduce TPEC, an aggregation-induced emission (AIE) molecule derived from tetraphenylethylene-based tetracarboxylate, which demonstrates multifunctional capabilities, including metal ion sensing and self-erasable writing. TPEC exhibits amphiphilicity in water, self-assembling into single-layer nanosheets with robust blue fluorescence.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!