The three-dimensional structure and dynamics of de novo designed, amphiphilic four-helix bundle peptides (or "maquettes"), capable of binding metallo-porphyrin cofactors at selected locations along the length of the core of the bundle, are investigated via molecular dynamics simulations. The rapid evolution of the initial design to stable three-dimensional structures in the absence (apo-form) and presence (holo-form) of bound cofactors is described for the maquettes at two different soft interfaces between polar and nonpolar media. This comparison of the apo- versus holo-forms allows the investigation of the effects of cofactor incorporation on the structure of the four-helix bundle. The simulation results are in qualitative agreement with available experimental data describing the structures at lower resolution and limited dimension.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp0666378DOI Listing

Publication Analysis

Top Keywords

three-dimensional structure
8
structure dynamics
8
dynamics novo
8
novo designed
8
designed amphiphilic
8
soft interfaces
8
molecular dynamics
8
dynamics simulations
8
four-helix bundle
8
dynamics
4

Similar Publications

Efficient and accurate nanocarrier development for targeted drug delivery is hindered by a lack of methods to analyze its cell-level biodistribution across whole organisms. Here we present Single Cell Precision Nanocarrier Identification (SCP-Nano), an integrated experimental and deep learning pipeline to comprehensively quantify the targeting of nanocarriers throughout the whole mouse body at single-cell resolution. SCP-Nano reveals the tissue distribution patterns of lipid nanoparticles (LNPs) after different injection routes at doses as low as 0.

View Article and Find Full Text PDF

Graded porous scaffold mediates internal fluidic environment for 3D in vitro mechanobiology.

Comput Biol Med

January 2025

Department of Biomedical Engineering, Faculty of Science and Engineering, Swansea University, Swansea, United Kingdom; Zienkiewicz Institute for Modelling Data and AI, Swansea University, Swansea, United Kingdom. Electronic address:

Most cell types are mechanosensitive, their activities such as differentiation, proliferation and apoptosis, can be influenced by the mechanical environment through mechanical stimulation. In three dimensional (3D) mechanobiological in vitro studies, the porous structure of scaffold controls the local mechanical environment that applied to cells. Many previous studies have focused on the topological design of homogeneous scaffold struts.

View Article and Find Full Text PDF

Background: This study investigates the effectiveness of a three-dimensional reconstruction mathematical model (3D-IPR) for preoperative planning in locally advanced colon cancer (LACC) with threatened surgical margins. The objective was to evaluate the utility of a 3D-IPR surgical planner tool in cases of LACC with threatened surgical margins. Additionally, the study aims to compare the diagnostic accuracy of the 3D-IPR model against conventional CT scans in determining the infiltration of neighboring structures.

View Article and Find Full Text PDF

3D Vertical Ferroelectric Capacitors with Excellent Scalability.

Nano Lett

January 2025

Division of Electronics and Electrical Engineering, Dongguk University, Seoul 04620, South Korea.

Three-dimensional vertically stacked memory is more cost-effective than two-dimensional stacked memory. Vertically stacked memory using ferroelectric materials has great potential not only in high-density memory but also in neuromorphic fields because it secures low voltage and fast operation speed. This paper presents the implementation of a ferroelectric capacitor comprising a vertical two-layer stacked structure composed of a titanium nitride (TiN)/aluminum-doped hafnium oxide/TiN configuration.

View Article and Find Full Text PDF

The optimal method for three-dimensional thermal imaging within cells involves collecting intracellular temperature responses while simultaneously obtaining corresponding 3D positional information. Current temperature measurement techniques based on the photothermal properties of quantum dots face several limitations, including high cytotoxicity and low fluorescence quantum yields. These issues affect the normal metabolic processes of tumor cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!