A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

New insights on the nature of the chemical species involved during the process of dopamine deprotonation in aqueous solution: theoretical and experimental study. | LitMetric

Due to dopamine's chemical structure and the fact that it has three pKa values, its deprotonation process, in aqueous solution, may involve different chemical species. For instance, the first deprotonation step, from the fully protonated dopamine molecule (H3DA+) to the neutral one (H2DA), will result in zwitterionic species if a proton from one of the OH groups in the catechol ring is lost or into a neutral species if the proton is lost from the amino group. Given that the interaction of such a product with its environment will be quite different depending on its nature, it is very important, therefore, to have an accurate knowledge of which is the dopamine chemical species that results after each deprotonation step. In order to gain a better understanding of dopamine chemistry and to establish a plausible dopamine deprotonation pathway, the optimized geometries of the aforementioned species were calculated in this work by means of the density functionals theory (B3LYP/6-311+G(d,p)) in both cases: in vacuo and with solvent effect, to assess, among other theoretical criteria, the proton affinities of the different dopamine species. This permitted us to propose the following reaction pathway: [reaction in text]. Moreover, the calculations of the chemical shift (NMR-GIAO) modeling the effect of the solvent with a continuum method (PCM) was in agreement with the 13C NMR experimental spectra, which confirmed even further the proposed deprotonation pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp0637227DOI Listing

Publication Analysis

Top Keywords

chemical species
12
dopamine deprotonation
8
aqueous solution
8
deprotonation step
8
species proton
8
deprotonation pathway
8
species
7
dopamine
6
deprotonation
6
chemical
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!