Fluorescent biomembrane probe for ratiometric detection of apoptosis.

J Am Chem Soc

Photophysique des Interactions Moléculaires, UMR 7175 CNRS, Institut Gilbert Laustriat, Faculté de Pharmacie, Université Louis Pasteur, Strasbourg 1, 74 Route du Rhin, 67401 Illkirch Cedex, France.

Published: February 2007

Herein, we developed the first ratiometric fluorescent probe for apoptosis detection. This probe incorporates selectively into the outer leaflet of the cell plasma membrane and senses the loss of the plasma membrane asymmetry occurring during the early steps of apoptosis. The high specificity to the plasma membranes was achieved by introduction into the probe of a membrane anchor, composed of a zwitterionic group and a long (dodecyl) hydrophobic tail. The fluorescence reporter of this probe is 4'-(diethylamino)-3-hydroxyflavone, which exhibits excited-state intramolecular proton transfer (ESIPT), resulting in two-band emission highly sensitive to the lipid composition of the biomembranes. Fluorescence spectroscopy, flow cytometry, and microscopy measurements show that the ratio of the two emission bands of the probe changes dramatically in response to apoptosis. This response reflects the changes in the lipid composition of the outer leaflet of the cell plasma membrane because of the exposure of the anionic phospholipids from the inner leaflet at the early steps of apoptosis. Being ratiometric, the response of the new probe can be easily quantified on an absolute scale. This allows monitoring by laser scanning confocal microscopy the degree and spatial distribution of the apoptotic changes at the cell plasma membranes, a feature that can be hardly achieved with the commonly used fluorescently labeled annexin V assay.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja068008hDOI Listing

Publication Analysis

Top Keywords

cell plasma
12
plasma membrane
12
outer leaflet
8
leaflet cell
8
early steps
8
steps apoptosis
8
plasma membranes
8
lipid composition
8
probe
7
apoptosis
5

Similar Publications

Neuraminidase 1 regulates neuropathogenesis by governing the cellular state of microglia via modulation of Trem2 sialylation.

Cell Rep

January 2025

Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Anatomy and Neurobiology, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA. Electronic address:

Neuraminidase 1 (NEU1) cleaves terminal sialic acids from sialoglycoproteins in endolysosomes and at the plasma membrane. As such, NEU1 regulates immune cells, primarily those of the monocytic lineage. Here, we examine how Neu1 influences microglia by modulating the sialylation of full-length Trem2 (Trem2-FL), a multifunctional receptor that regulates microglial survival, phagocytosis, and cytokine production.

View Article and Find Full Text PDF

Systemic lupus erythematosus (SLE) is a chronic, autoimmune inflammatory disease with a multisystem manifestation and a variety of clinical symptoms. Over the last decades, the prognosis and life expectancy of patients with SLE improved significantly due to the implementation of corticosteroids combined with immunosuppressive agents. Nevertheless, the use of these medications is often associated with the occurrence of serious side effects and additional deterioration of organ function.

View Article and Find Full Text PDF

In this study, we employed a novel fluorescent probe, RO7304924-which selectively targets cannabinoid 2 receptor (CB2R)-to assess the lateral mobility of CB2R within the plasma membrane of Chinese hamster ovary cells stably expressing a functional, untagged receptor variant. Utilizing confocal fluorescence recovery after photobleaching (FRAP), we quantified the diffusion coefficient and mobile fraction of CB2R, thereby demonstrating the efficacy of RO7304924 as an innovative tool for elucidating the dynamics of this major endocannabinoid-binding G protein-coupled receptor. Our present findings highlight the potential of combining advanced ligand-based fluorescent probes with FRAP for future investigations into the biochemical details of CB2R mobility in living cells, and its impact on receptor-dependent cellular processes.

View Article and Find Full Text PDF

Introduction: The development of efficient and sustainable catalytic methodolo-gies has garnered considerable attention in contemporary organic synthesis.

Methods: Herein, we present a novel approach employing the Cu@DPP-SPION catalyst for the synthesis of ethyl 4-(aryl)-6-methyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate derivatives. This versatile catalytic system incorporates copper nanoparticles supported on 4-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)benzoic acid-functionalized superparamagnetic iron oxide nanoparticles (SPIONs).

View Article and Find Full Text PDF

Background: Takayasu arteritis (TAK) and giant cell arteritis (GCA), the most common forms of large-vessel vasculitis (LVV), can result in serious morbidity. Understanding the molecular basis of LVV should aid in developing better biomarkers and treatments.

Methods: Plasma proteomic profiling of 184 proteins was performed in two cohorts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!