The cyclization of the RNA model 2-hydroxypropyl p-nitrophenyl phosphate (HPNPP, 1) promoted by Zn2+ alone and the 1,5,9-triazacyclododecane complex of Zn2+ (Zn2+:[12]aneN3) is studied in ethanol in the presence of 0.5 equiv of -OEt/Zn2+ to investigate the effect of a low polarity/dielectric medium on a metal-catalyzed reaction of biological relevance. Ethanol exerts a medium effect that promotes strong binding of HPNPP to Zn2+, followed by a dimerization to form a catalytically active complex (HPNPP:Zn2+)2 in which the phosphate undergoes cyclization with a rate constant of kcat = 2.9 s(-1) at s(s)pH 7.1. In the presence of the triaza ligand:Zn2+ complex, the change from water to methanol and then to ethanol brings about a mechanism where two molecules of the complex, suggested as EtOH:Zn2+:[12]aneN3 and its basic form, EtO-:Zn2+:[12]aneN3, bind to HPNPP and catalyze its decomposition with a rate constant of kcat of 0.13 s(-1) at s(s)pH 7.1. Overall, the acceleration exhibited in these two situations is 4 x 10(14)-fold and 1.7 x 10(12)-fold relative to the background ethoxide-promoted reactions at the respective s(s)pH values. The implications of these findings are discussed within the context of the idea that enzymatic catalysis is enhanced by a reduced effective dielectric constant within the active site.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic062065u | DOI Listing |
Blood
January 2025
Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States.
Stemness-associated cell states are linked to chemotherapy resistance in AML. We uncovered a direct mechanistic link between expression of the stem cell transcription factor GATA2 and drug resistance. The GATA-binding protein 2 (GATA2) plays a central role in blood stem cell generation and maintenance.
View Article and Find Full Text PDFJ Mol Histol
January 2025
Obstetrics and Gynecology, The Affiliated People's Hospital of Ningbo University, 251 East Baizhang Road, Ningbo, 315040, Zhejiang, China.
Long non-coding RNAs (lncRNAs) have emerged as pivotal regulatory molecules in cancer biology. Among these, long intergenic non-protein coding RNA 02418 (LINC02418), a recently identified lncRNA, has been linked to endometrial cancer (EC), although its function and operational mechanisms are largely unclear. The present investigation aims to elucidate the molecular mechanism through which LINC02418 influences EC pathogenesis.
View Article and Find Full Text PDFMetab Brain Dis
January 2025
Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, P.R. China.
The immune system has emerged as a major factor in the pathogenesis of Alzheimer's disease (AD). PANoptosis is a newly defined programmed cell death mechanism related to many inflammatory diseases. This study aimed to identify the differentially expressed (DE) PANoptosis-related genes with characteristics of immune dysregulation (PRGIDs) in AD using bioinformatics analysis of bulk RNA-seq and single-nuclei RNA sequencing (snRNA-seq) data.
View Article and Find Full Text PDFClin Oral Investig
January 2025
Department of Endodontics, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China.
Objectives: We investigated the recently generated RNA-sequencing dataset of pulpitis to identify the potential pain-related lncRNAs for pulpitis prediction.
Materials And Methods: Differential analysis was performed on the gene expression profile between normal and pulpitis samples to obtain pulpitis-related genes. The co-expressed gene modules were identified by weighted gene coexpression network analysis (WGCNA).
Cancer Res
January 2025
University of Cambridge, Cambridge, United Kingdom.
Pancreatic ductal adenocarcinoma (PDAC) contains an extensive stroma that modulates response to therapy, contributing to the dismal prognosis associated with this cancer. Evidence suggests that PDAC stromal composition is shaped by mutations within malignant cells, but most previous work has focused on pre-clinical models driven by KrasG12D and mutant Trp53. Elucidation of the contribution of additional known oncogenic drivers, including KrasG12V mutation and Smad4 loss, is needed to increase understanding of malignant cell-stroma crosstalk in PDAC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!