Improved mechanical oil spill recovery using an optimized geometry for the skimmer surface.

Environ Sci Technol

Donald Bren School of Environmental Science and Management, University of California, Santa Barbara, California 93106-5131, USA.

Published: December 2006

The primary objective of this research was to improve the efficiency of mechanical oil spill response equipment by optimizing the geometry of the oleophilic skimmer recovery surface. Another objective of this work was to study the relation between the operational variables and the oil spill recovery efficiency in a full-scale oil spill recovery test, comparing novel and conventional oleophilic drum skimmer configurations. The study showed that using the new surface pattern in the recovery unit can increase the skimmer oil recovery efficiency up to three times. The improved surface pattern was found to be efficient on oils with a wide range of viscosities, including diesel oil, which is a challenging liquid to recover due to its low viscosity. The effect of the surface pattern dimensions on the recovery efficiency was explored. Guidelines for the design of a more efficient surface geometry tailored to the properties of the recovered oil were developed.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es061842mDOI Listing

Publication Analysis

Top Keywords

oil spill
16
spill recovery
12
recovery efficiency
12
surface pattern
12
mechanical oil
8
oil
7
recovery
7
surface
6
improved mechanical
4
spill
4

Similar Publications

Facile and green fabrication of biodegradable aerogel from chitosan derivatives/modified gelatin as absorbent for oil removal.

Int J Biol Macromol

January 2025

Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, China. Electronic address:

Frequent oil spills have caused increasingly severe pollution of marine water bodies. As a result, exploring green and efficient aerogels to tackles oil pollution is in high demand. In this work, a unique strategy for preparing all-biomass aerogel was innovatively proposed.

View Article and Find Full Text PDF

Exogenous nitrogen supplementation for the bioremediation of petroleum-contaminated soils is a widely adopted and effective environmentally friendly strategy. However, the mechanism by which varying nitrogen dosages affect hydrocarbon degradation pathways remains unclear. This study conducted bioremediation on soil with a total petroleum hydrocarbon (TPH) content of 17,090 mg/kg over 210 days.

View Article and Find Full Text PDF

This study provides a detailed approach to evaluating water quality in the Haridwar district, Uttarakhand, India, by integrating physicochemical and microbiological investigations. It employs multivariate analysis and applies water quality and trophic state indices to evaluate the current state of the water and identify potential sources of contamination. The results from the correlation matrix highlight the dynamic interactions between different water quality parameters.

View Article and Find Full Text PDF

This study focused on fabricating a cellulose aerogel for oil spill clean-up, using common reed () as the cellulose source. The process involved isolating cellulose from reed via traditional Kraft pulping, considering the effects of key factors on the isolated cellulose content. After a two-stage HP bleaching sequence, the highest cellulose content achieved was 27.

View Article and Find Full Text PDF

Burning and flaring of oil and gas following the 2010 Deepwater Horizon (DWH) oil spill generated high airborne concentrations of fine particulate matter (PM). Neurological effects of PM have been previously reported, but this relationship has received limited attention in the context of oil spills. We evaluated associations between burning-related PM and prevalence of self-reported neurological symptoms during, and 1-3 years after, the DWH disaster cleanup.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!