Tinnitus and neural plasticity of the brain.

Otol Neurotol

Department of Otorhinolaryngology, University Medical Center Groningen, Groningen, The Netherlands.

Published: February 2007

Objective: To describe the current ideas about the manifestations of neural plasticity in generating tinnitus.

Data Sources: Recently published source articles were identified using MEDLINE, PubMed, and Cochrane Library according to the key words mentioned below.

Study Selection: Review articles and controlled trials were particularly selected.

Data Extraction: Data were selected systematically, scaled on validity and comparability.

Conclusion: An altered afferent input to the auditory pathway may be the initiator of a complex sequence of events, finally resulting in the generation of tinnitus at the central level of the auditory nervous system. The effects of neural plasticity can generally be divided into early modifications and modifications with a later onset. The unmasking of dormant synapses, diminishing of (surround) inhibition and initiation of generation of new connections through axonal sprouting are early manifestations of neural plasticity, resulting in lateral spread of neural activity and development of hyperexcitability regions in the central nervous system. The remodeling process of tonotopic receptive fields within auditory pathway structures (dorsal cochlear nucleus, inferior colliculus, and the auditory cortex) are late manifestations of neural plasticity. The modulation of tinnitus by stimulating somatosensory or visual systems in some people with tinnitus might be explained via the generation of tinnitus following the nonclassical pathway. The similarities between the pathophysiological processes of phantom pain sensations and tinnitus have stimulated the theory that chronic tinnitus is an auditory phantom perception.

Download full-text PDF

Source
http://dx.doi.org/10.1097/MAO.0b013e31802b3248DOI Listing

Publication Analysis

Top Keywords

neural plasticity
20
manifestations neural
12
auditory pathway
8
generation tinnitus
8
nervous system
8
tinnitus
7
plasticity
5
neural
5
auditory
5
tinnitus neural
4

Similar Publications

Approaches of promoting a neural milieu permissive for plasticity and resilience against neuronal injury are important strategies for the treatment of a range of neurological disorders. Fibroblast growth factor 21 (FGF21) which is known for its role as a potent regulator of glucose and energy metabolism has also proved to be neuroprotective against various mental diseases. However, the underlying molecular mechanisms remain elusive.

View Article and Find Full Text PDF

Postpartum depression (PPD) profoundly impacts the mental and physical health of women globally and is an incurable psychological disorder. Traditional pharmacological treatments often have strong side effects and may adversely affect infant health through breastfeeding, underscoring the critical need for natural and gentle treatment strategies. Sugemule-7, a traditional Chinese medicine comprising multiple natural plant ingredients, represents a potentially safer and more effective alternative.

View Article and Find Full Text PDF

Glucose metabolism impairment in major depressive disorder.

Brain Res Bull

January 2025

First Affiliated Hospital, Heilongjiang University of Chinese Medicine, 150040 Harbin, Heilongjiang, China. Electronic address:

Major depressive disorder (MDD) is a common mental disorder with chronic tendencies that seriously affect regular work, life, and study. However, its exact pathogenesis remains unclear. Patients with MDD experience systemic and localized impairments in glucose metabolism throughout the disease course, disrupting various processes such as glucose uptake, glycoprotein transport, glycolysis, the tricarboxylic acid cycle (TCA), and oxidative phosphorylation (OXPHOS).

View Article and Find Full Text PDF

Neurocan regulates axon initial segment organization and neuronal activity.

Matrix Biol

January 2025

German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association of German Research Centers, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany; Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany. Electronic address:

The neural extracellular matrix (ECM) accumulates in the form of perineuronal nets (PNNs), particularly around fast-spiking GABAergic interneurons in the cortex and hippocampus, but also around synapses and in association with the axon initial segments (AIS) and nodes of Ranvier. Increasing evidence highlights the role of Neurocan (Ncan), a brain-specific component of ECM, in the pathophysiology of neuropsychiatric disorders like bipolar disorder and schizophrenia. Ncan localizes at PNNs, perisynaptically, and at the nodes of Ranvier and the AIS, highlighting its potential role in regulating axonal excitability.

View Article and Find Full Text PDF

Neuroplasticity in Diffuse Low-grade Gliomas: Backward Modelling of Brain-tumor Interactions Prior to Diagnosis is Needed to Better Predict Recovery after Treatment.

Curr Neurol Neurosci Rep

January 2025

Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, 80 Avenue Augustin Fliche, Montpellier, 34295, France.

Purpose Of Review: In low-grade glioma (LGG), besides the patient's neurological status and tumor characteristics on neuroimaging, current treatment guidelines mainly rely on the glioma's genetics at diagnosis to define therapeutic strategy, usually starting with surgical resection. However, this snapshot in time does not take into account the antecedent period of tumor progression and its interactions with the brain before presentation. This article reviews new concepts that pertain to reconstruct the history of previous interplay between the LGG's course and adaptive changes in the connectome within which the glioma is embedded over the years preceding the diagnosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!