Purpose: Immunotherapy is a promising antitumor strategy, which can be successfully combined with current anticancer treatments, as suggested by recent studies showing the paradoxical chemotherapy-induced enhancement of the immune response. The purpose of the present work is to dissect the biological events induced by chemotherapy that cooperate with immunotherapy in the success of the combined treatment against cancer. In particular, we focused on the following: (a) cyclophosphamide-induced modulation of several cytokines, (b) homeostatic proliferation of adoptively transferred lymphocytes, and (c) homing of transferred lymphocytes to secondary lymphoid organs and tumor mass.
Experimental Design: Here, we used the adoptive transfer of tumor-immune cells after cyclophosphamide treatment of tumor-bearing mice as a model to elucidate the mechanisms by which cyclophosphamide can render the immune lymphocytes competent to induce tumor rejection.
Results: The transfer of antitumor immunity was found to be dependent on CD4(+) T cells and on the cooperation of adoptively transferred cells with the host immune system. Of note, tumor-immune lymphocytes migrated specifically to the tumor only in mice pretreated with cyclophosphamide. Cyclophosphamide treatment also promoted homeostatic proliferation/activation of transferred B and T lymphocytes. Optimal therapeutic responses to the transfer of immune cells were associated with the cyclophosphamide-mediated induction of a "cytokine storm" [including granulocyte macrophage colony-stimulating factor, interleukin (IL)-1beta, IL-7, IL-15, IL-2, IL-21, and IFN-gamma], occurring during the "rebound phase" after drug-induced lymphodepletion.
Conclusions: The ensemble of these data provides a new rationale for combining immunotherapy and chemotherapy to induce an effective antitumor response in cancer patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/1078-0432.CCR-06-1209 | DOI Listing |
J Immunother Cancer
December 2024
Swiss Institute of Bioinformatics, Lausanne, Switzerland
Background: The adoptive cell transfer (ACT) of T cell receptor (TCR)-engineered T cells targeting the HLA-A2-restricted epitope NY-ESO-1 (A2/NY) has yielded important clinical responses against several cancers. A variety of approaches are being taken to augment tumor control by ACT including TCR affinity-optimization and T-cell coengineering strategies to address the suppressive tumor microenvironment (TME). Most TCRs of clinical interest are evaluated in immunocompromised mice to enable human T-cell engraftment and do not recapitulate the dynamic interplay that occurs with endogenous immunity in a treated patient.
View Article and Find Full Text PDFScand J Immunol
January 2025
Department of Ophthalmology, Shanghai Jiangong Hospital, Shanghai, China.
Dry eye disease (DED) is an inflammatory disorder in which CD4 T cells play a significant role in its pathogenesis. A CD4 T cell subset termed granulocyte-macrophage colony-stimulating factor-producing T helper (ThGM) cells would contribute to DED pathogenesis. However, the mechanisms by which the activity of ThGM cells is modulated are not thoroughly understood.
View Article and Find Full Text PDFNature
January 2025
Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA.
This study examines the origin and differentiation of stem-like CD8+ T cells that are essential for sustained T cell immunity in chronic viral infections and cancer and also play a key role in PD-1 directed immunotherapy. These PD-1+ TCF-1+ TOX+ stem-like CD8+ T cells, also referred to as precursors of exhausted T cells, have a distinct program that allows them to adapt to chronic antigen stimulation. Using the mouse model of chronic LCMV infection we found that virus specific stem-like CD8+ T cells are generated early (day 5) during chronic infection suggesting that this crucial fate commitment occurs irrespective of infection outcome.
View Article and Find Full Text PDFNeurogastroenterol Motil
January 2025
Center for Intestinal Neuro-Immune Interactions, Translational Research Center for GI Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium.
Introduction: Postoperative ileus (POI) is an iatrogenic disorder marked by temporary impaired gastrointestinal (GI) motility post-abdominal surgery. Surgical handling of the intestine activates resident macrophages (Mfs), leading to inflammatory cytokine release and leukocyte recruitment into the muscularis, which compromises intestinal contractility. The mechanisms behind this activation are unclear.
View Article and Find Full Text PDFFront Immunol
January 2025
Molecular Immunology and Gene Therapy, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
Generation of high avidity T cell receptors (TCRs) reactive to tumor-associated antigens (TAA) is impaired by tolerance mechanisms, which is an obstacle to effective T cell therapies for cancer treatment. NY-ESO-1, a human cancer-testis antigen, represents an attractive target for such therapies due to its broad expression in different cancer types and the restricted expression in normal tissues. Utilizing transgenic mice with a diverse human TCR repertoire, we isolated effective TCRs against NY-ESO-1 restricted to HLA-A*02:01.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!