Purpose: The value of measuring expression of individual genes relevant to particular chemotherapy drugs and encoding metabolizing enzymes, transporters, or drug targets, as predictors of treatment response and outcome in pediatric acute lymphoblastic leukemia (ALL), remains controversial.
Experimental Design: In a case-control population of 91 pediatric B-precursor ALL patients [42 relapsed within 4 years (cases) and 49 did not relapse (controls)], we used real-time reverse transcription-PCR to measure transcript levels for 20 genes relevant to chemotherapy with the five major drugs used to treat this disease, including asparaginase, 6-mercaptopurine, methotrexate, prednisone, and vincristine. Results were confirmed in a separate case-control population of 26 patients.
Results: Only the human reduced folate carrier (hRFC) gene, encoding the major membrane transporter for methotrexate, showed a significant difference in median transcript levels between the 42 cases and the 49 controls (P = 0.0278, Wilcoxon test). Using cutoffs for hRFC expression levels (based on Akaike information criterion), there were statistically significant associations between hRFC transcripts and treatment relapse (P = 0.0052). hRFC-B, corresponding to the major hRFC transcript form in ALL, was also measured by real-time reverse transcription-PCR and was prognostic. The association between treatment relapse and hRFC levels was validated in a separate study population of 14 cases and 12 controls from an earlier case-control study (P = 0.0221).
Conclusions: Our results strongly suggest the prognostic importance of hRFC gene expression to treatment outcomes in pediatric ALL. They validate our previous studies of hRFC transcriptional regulation in pediatric ALL and provide further compelling evidence for the critical role for methotrexate in the successful treatment of this disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/1078-0432.CCR-06-2145 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
Superparamagnetic iron oxide nanoparticles (SPIONs) are known to be good MRI contrasts, but they have a high tendency to aggregate and their biocompatibility is limited. Hyaluronic acid is highly biocompatible, can provide SPION with colloidal stability, and interacts specifically with tumor cells through the CD44 receptor; therefore, it was used as a stabilizing layer. We successfully obtained SPION coated with hyaluronic acid and further functionalized it with folic acid to construct a dual-targeted system.
View Article and Find Full Text PDFQJM
January 2025
Peking University Traditional Chinese Medicine Clinical Medical School (Xiyuan), Peking University Health Science Center, Beijing, 100091, People's Republic of China.
Gastric cancer (GC) is a significant global health challenge, particularly in high-incidence regions like East Asia. Despite improvements in screening and treatment, the progressive nature of precancerous lesions-such as atrophic gastritis, intestinal metaplasia, and dysplasia-necessitates effective prevention strategies. This review evaluates the role of chemoprevention in GC, focusing on agents designed to target these precancerous lesions.
View Article and Find Full Text PDFmBio
January 2025
Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
Unlabelled: Peptidoglycan (PG) is an important bacterial macromolecule that confers cell shape and structural integrity, and is a key antibiotic target. Its synthesis and turnover are carefully coordinated with other cellular processes and pathways. Despite established connections between the biosynthesis of PG and the outer membrane, or PG and DNA replication, links between PG and folate metabolism remain comparatively unexplored.
View Article and Find Full Text PDFBMC Cancer
January 2025
Department of Laboratory Medicine, Affiliated Gaozhou People's Hospital, Guangdong Medical University, Maoming, 525200, P.R. China.
Background: DNA hypomethylation and uracil misincorporation into DNA, both of which have a very important correlation with colorectal carcinogenesis. Folate plays a crucial role in DNA synthesis, acting as a coenzyme in one-carbon metabolism, which involves the synthesis of purines, pyrimidines, and methyl groups. MTHFR, a key enzyme in folate metabolism, has been widely studied in relation to neural tube defects and hypertension, but its role in colorectal cancer remains underexplored.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
Renal fibrosis is widely recognized as the ultimate outcome of many chronic kidney diseases. The process of epithelial-mesenchymal transition (EMT) plays a critical role in the progression of fibrosis following renal injury. UHRF1, as a critical epigenetic regulator, may play an essential role in the pathogenesis and progression of renal fibrosis and EMT.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!