Nitric oxide (NO) is an uncharged free-radical gas that is involved in a number of physiological and pathological events. We have examined the expression of various subunits of soluble guanylyl cyclase (sGC alpha (1), alpha (2), beta (1), beta (2)), nitric oxide synthase (s) (NOS-1, -2, -3), MLC2 (cardiac marker) and a cardiac-specific transcription factor (Nkx2.5) in human embryonic stem (hES) cells (H-9 cells) and differentiated cells subjected to differentiation in cell suspension using embryoid body (EB) formation. Our results demonstrate a time-dependent increase in the expression of sGC alpha (1) and beta (1) at the mRNA and protein levels in differentiated cells compared to undifferentiated H-9 cells as examined by real-time PCR and western blot analysis. mRNA for sGC alpha (2) also showed a time-dependent increase compared to undifferentiated cells. In contrast, there was a time-dependent decrease in sGC beta (2) mRNA expression in differentiated cells compared to undifferentiated H-9 cells. In contrast to undifferentiated H-9 cells, the maximum mRNA expression of cardiac marker MLC2 and the cardiac-specific transcription factor Nkx2.5 was observed at day 14 of the differentiated H-9 cells. The protein levels of MLC2 were stable up to day 25 compared to mRNA levels, which showed a sharp decline after day 15. Using immunofluorescence, we also demonstrate positive staining of cardiac markers such as troponin I, alpha-actinin, atrial natriuretic peptide, and SGC alpha (1) at days 8-37 post-differentiation. These results clearly demonstrate the role of NO signaling components in differentiation events or physiological processes of human ES or ES cell-derived cardiomyocytes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/scd.2006.15.779 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!