Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
An analytical model is developed for the potential drop and differential capacity across the diffuse layer which considers the effects of ion size on these properties. For symmetric electrolytes, this potential drop is expressed in terms of a cubic polynomial in the corresponding estimate in the Gouy-Chapman theory. Optimal polynomial coefficients and model validation for 1:1 and 2:2 electrolytes are provided by fits of Monte Carlo data obtained for a restricted electrolyte in a primitive solvent. Simple relationships between these coefficients and parameters commonly associated with the mean spherical approximation are obtained. It is shown that the series approach accurately describes potential drops and differential capacities of the diffuse layer for 1:1 and 2:2 electrolytes for the chosen assumptions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp067039w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!