A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Methane oxidation in water-spreading and compost biofilters. | LitMetric

Methane oxidation in water-spreading and compost biofilters.

Waste Manag Res

Department of Oceanography, 0102 OSB, West Call Street, Florida State University, Tallahassee 32306, USA.

Published: December 2006

This study evaluated two biofilter designs to mitigate methane emissions from landfill vents. Water-spreading biofilters were designed to use the capillarity of coarse sand overlain by a finer sand to increase the active depth for methane oxidation. Compost biofilters consisted of 238-L barrels containing a 1:1 mixture (by volume) of compost to expanded polystyrene pellets. Two replicates of each type of biofilter were tested at an outdoor facility. Gas inflow consisted of an approximately 1:1 mixture (by volume) of CH4 and CO2. Methane output rates (J(out); g m(-2) day(-1)) were measured using the static chamber technique and the Pedersen et al. (2001) diffusion model. Methane oxidation rate (J(ox); g m(-2) day(-1)) and fraction of methane oxidized (f(ox)) were determined by mass balance. For methane inflow rates (J(in)) between 250 and 500 g m(-2) day(-1), the compost biofilter J(ox), 242 g m(-2) day(-1), was not significantly different (P = 0.0647) than the water-spreading biofilter J(ox), 203 g m(-2) day(-1); and the compost f(ox), 69%, was not significantly different (P = 0.7354) than water-spreading f(ox), 63%. The water-spreading biofilter was shown to generally perform as well as the compost biofilter, and it may be easier to implement at a landfill and require less maintenance.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0734242X06065704DOI Listing

Publication Analysis

Top Keywords

m-2 day-1
20
methane oxidation
12
compost biofilters
8
mixture volume
8
day-1 compost
8
compost biofilter
8
biofilter jox
8
water-spreading biofilter
8
methane
7
compost
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!