Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Acetylcholinesterase inhibition was modeled for a set of 136 tacrine analogues using Bayesian-regularized Genetic Neural Networks (BRGNNs). In the BRGNN approach the Bayesian-regularization avoids overtraining/overfitting and the genetic algorithm (GA) allows exploring an ample pool of 3D-descriptors. The predictive capacity of our selected model was evaluated by averaging multiple validation sets generated as members of diverse-training set neural network ensembles (NNEs). The ensemble averaging provides reliable statistics. When 40 members are assembled, the NNE provides a reliable measure of training and test set R values of 0.921 and 0.851 respectively. In other respects, the ability of the nonlinear selected GA space for differentiating the data was evidenced when the total data set was well distributed in a Kohonen Self-Organizing Map (SOM). The location of the inhibitors in the map facilitates the analysis of the connection between compounds and serves as a useful tool for qualitative predictions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/14756360600862366 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!