Retinoblastoma protein regulation by the COP9 signalosome.

Mol Biol Cell

Department of Biochemistry and Molecular Biology and Genetics Program, Michigan State University, East Lansing, MI 48824, USA.

Published: April 2007

Similar to their human counterparts, the Drosophila Rbf1 and Rbf2 Retinoblastoma family members control cell cycle and developmentally regulated gene expression. Increasing evidence suggests that Rbf proteins rely on multiprotein complexes to control target gene transcription. We show here that the developmentally regulated COP9 signalosome (CSN) physically interacts with Rbf2 during embryogenesis. Furthermore, the CSN4 subunit of the COP9 signalosome co-occupies Rbf target gene promoters with Rbf1 and Rbf2, suggesting an active role for the COP9 signalosome in transcriptional regulation. The targeted knockdown of individual CSN subunits leads to diminished Rbf1 and Rbf2 levels and to altered cell cycle progression. The proteasome-mediated destruction of Rbf1 and Rbf2 is increased in cells and embryos with diminished COP9 activity, suggesting that the COP9 signalosome protects Rbf proteins during embryogenesis. Previous evidence has linked gene activation to protein turnover via the promoter-associated proteasome. Our findings suggest that Rbf repression may similarly involve the proteasome and the promoter-associated COP9 signalosome, serving to extend Rbf protein lifespan and enable appropriate programs of retinoblastoma gene control during development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1838975PMC
http://dx.doi.org/10.1091/mbc.e06-09-0790DOI Listing

Publication Analysis

Top Keywords

cop9 signalosome
24
rbf1 rbf2
16
cell cycle
8
developmentally regulated
8
rbf proteins
8
target gene
8
cop9
7
signalosome
6
rbf2
5
gene
5

Similar Publications

Prolyl Hydroxylase Domain protein 2 (PHD2) targets Hypoxia Inducible Factor alpha subunits (HIFα) for oxygen-dependent proline hydroxylation that leads to subsequent ubiquitination and degradation of HIFα. In addition to HIF proteins, growing evidence suggested that PHD2 may exert its multifaceted function through hydroxylase-dependent or independent activities. Given the critical role of PHD2 in diverse biological processes, it is important to comprehensively identify potential PHD2 interacting proteins.

View Article and Find Full Text PDF

Ubiquitination of OsCSN5 by OsPUB45 activates immunity by modulating the OsCUL3a-OsNPR1 module.

Sci Adv

January 2025

State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.

The COP9 signalosome (CSN) is a highly conserved protein complex in eukaryotes, with CSN5 serving as its critical catalytic subunit. However, the role of CSN5 in plant immunity is largely unexplored. Here, we found that suppression of in rice enhances resistance against the fungal pathogen and the bacterial pathogen pv.

View Article and Find Full Text PDF

CsCIPK20 Improves Tea Plant Cold Tolerance by Modulating Ascorbic Acid Synthesis Through Attenuation of CsCSN5-CsVTC1 Interaction.

Plant Cell Environ

December 2024

Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China.

Low temperature is a limiting environmental factor for tea plant growth and development. CBL-interacting protein kinases (CIPKs) are important components of the calcium pathway and involved in plant development and stress responses. Herein, we report the function and regulatory mechanisms of a low-temperature-inducible gene, CsCIPK20, in tea plants.

View Article and Find Full Text PDF

COPS5 regulates osteosarcoma progression by upregulating KHSRP to promote Per2 mRNA decay.

Exp Cell Res

January 2025

Department of Orthopaedics, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, Hunan Province, PR China.

Osteosarcoma (OS) is a common bone sarcoma that is often seen in children and adolescents. This study delves into the intricate regulatory network involving COP9 signalosome subunit 5 (COPS5), KH-type splicing regulatory protein (KHSRP), and Period circadian clock 2 (Per2) in the context of osteosarcoma cell malignant phenotype. CCK-8 assay was applied to assess cell proliferation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!