Purpose: To demonstrate feature subanalysis and error correction of optical coherence tomography (OCT) data by using computer-assisted grading.
Methods: The raw exported StratusOCT (Carl Zeiss Meditec, Inc., Dublin, CA) scan data from 20 eyes of 20 patients were analyzed using custom software (termed OCTOR) designed to allow the user to define manually the retinal borders on each radial line scan. Measurements calculated by the software, including thickness of the nine standard macular subfields, foveal center point (FCP), and macular volume, were compared between two graders and with the automated Stratus analysis. Mean and range of differences for each parameter were calculated and assessed by Bland-Altman plots and Pearson correlation coefficients. Additional cases with clinically relevant subretinal findings were selected to demonstrate the capabilities of this system for quantitative feature subanalysis.
Results: Retinal thickness measurements for the various subfields and the FCP showed a mean difference of 1.7 mum (maximum, 7 microm) between OCTOR graders and a mean difference of 2.3 microm (maximum of 8 microm) between the OCTOR and Stratus analysis methods. Volume measurements between Stratus and OCTOR methods differed by a mean of 0.06 mm(3) (in reference to a mean macular volume of 6.81 mm(3)). The differences were not statistically significant, and the thicknesses correlated highly (R(2) > or = 0.98 for all parameters).
Conclusions: Manual identification of the inner and outer retinal boundaries on OCT scans can produce retinal thickness measurements consistent with those derived from the automated StratusOCT analysis. Computer-assisted OCT grading may be useful for correcting thickness measurements in cases with errors of automated retinal boundary detection and may be useful for quantitative subanalysis of clinically relevant features, such as subretinal fluid volume or pigment epithelial detachment volume.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1167/iovs.06-0554 | DOI Listing |
PLoS One
January 2025
Research Service and Pulmonary Section Medical Service, Veterans Affairs Ann Arbor Health System, Ann Arbor, Michigan, United States of America.
Deployment-related constrictive bronchiolitis (DRCB) has emerged as a health concern in military personnel returning from Southwest Asia. Exposure to smoke from a fire at the Al-Mishraq sulfur enrichment facility and/or burn pits was reported by a subset of Veterans diagnosed with this disorder. DRCB is characterized by thickening and fibrosis of small airways (SA) in the lung, but whether these are related to toxin inhalation remains uncertain.
View Article and Find Full Text PDFBr J Radiol
January 2025
Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, China.
Objectives: To evaluate the value of ultrasound (US) and shear wave velocity (SWV) to assess muscle in postmenopausal women with osteosarcopenia (OSP).
Methods: This study included 145 postmenopausal women, comprising 115 osteopenia/osteoporosis participants without sarcopenia (OP alone) and 30 OSP participants. All received the evaluation of bone mineral density (BMD), appendicular skeletal muscle mass index (ASMI), handgrip strength, calf circumference, 6-meter walking speed, and 5-time chair stand test.
ACS Appl Mater Interfaces
January 2025
Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
Organic photodetectors (OPDs) are key devices for monitoring vital signs, such as heart rate and blood oxygen level. For realizing the long-term measurement of biosignals, stable operation is essential. To improve the stability of OPDs, it is important to analyze each layer to understand the degradation mechanism.
View Article and Find Full Text PDFTransl Vis Sci Technol
January 2025
UCL Institute of Ophthalmology, University College London, London, UK.
Purpose: A human model able to simulate the manifestation of corneal endothelium decompensation could be advantageous for wound healing and future cell therapy assessment. The study aimed to establish an ex vivo human cornea endothelium wound model where endothelium function can be evaluated by measuring corneal thickness changes.
Methods: The human cornea was maintained in an artificial anterior chamber, with a continuous culture medium infusion system designed to sustain corneal endothelium and epithelium simultaneously.
Small Methods
January 2025
Forschungszentrum Juelich GmbH, Institute of Energy Technologies, IET-4, Electrochemical Process Engineering, 52425, Juelich, Germany.
Understanding the sheet resistance of porous electrodes is essential for improving the performance of polymer electrolyte membrane (PEM) water electrolyzers and related technologies. Despite its importance, existing methods often fail to provide reliable and comprehensive data, especially for porous materials with complex morphologies and non-uniform thicknesses. This study introduces a robust and straightforward method for determining the sheet resistance of porous electrodes using a novel probe concept based on industrial printed circuit board (PCB) technology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!