Pax6 transcription is under the control of two main promoters (P0 and P1), and these are autoregulated by Pax6. Additionally, Pax6 expression is under the control of the TGFbeta superfamily, although the precise mechanisms of such regulation are not understood. The effect of TGFbeta on Pax6 expression was studied in the FHL124 lens epithelial cell line and was found to cause up to a 50% reduction in Pax6 mRNA levels within 24 h. Analysis of luciferase reporters showed that Pax6 autoregulation of the P1 promoter, and its induction of a synthetic promoter encoding six paired domain-binding sites, were significantly repressed by both an activated TGFbeta receptor and TGFbeta ligand stimulation. Subsequently, a novel Pax6 binding site in P1 was shown to be necessary for autoregulation, indicating a direct influence of Pax6 protein on P1. In transfected cells, and endogenously in FHL124 cells, Pax6 co-immunoprecipitated with Smad3 following TGFbeta receptor activation, while in GST pull-down experiments, the MH1 domain of Smad3 was observed binding the RED sub-domain of the Pax6 paired domain. Finally, in DNA adsorption assays, activated Smad3 inhibited Pax6 from binding the consensus paired domain recognition sequence. We hypothesize that the Pax6 autoregulatory loop is targeted for repression by the TGFbeta/Smad pathway, and conclude that this involves diminished paired domain DNA-binding function resulting from a ligand-dependant interaction between Pax6 and Smad3.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1807973 | PMC |
http://dx.doi.org/10.1093/nar/gkl1105 | DOI Listing |
Toxicol Appl Pharmacol
January 2025
Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, United States of America. Electronic address:
Modeling brain development and function is challenging due to complexity of the organ. Human pluripotent stem cell (PSC)-derived brain-like organoids provide new tools to study the human brain. Compared with traditional in vivo toxicological studies, these 3D models, together with 2D cellular assays, enhance our understanding of the mechanisms of developmental neurotoxicity (DNT) during the early stages of neurogenesis and offer numerous advantages including a rapid, cost-effective approach for understanding compound mechanisms and assessing chemical safety.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Biomedical Engineering, Sogang University, Seoul 04107, Korea.
The differentiation of human induced pluripotent stem cells (hiPSCs) into neural progenitor cells (NPCs) is a promising approach for the treatment of neurodegenerative diseases and regenerative medicine. Dual-SMAD inhibition using small molecules has been identified as a key strategy for directing the differentiation of hiPSCs into NPCs by regulating specific cell signaling pathways. However, conventional culture methods are time-consuming and exhibit low differentiation efficiency in neural differentiation.
View Article and Find Full Text PDFiScience
January 2025
Section of Cell Biology and Functional Genomics, Department of Medicine, Endocrinology and Metabolism, Imperial College London, London, UK.
Long non-coding RNAs (lncRNAs) are emerging as crucial regulators of beta cell function. Here, we show that an lncRNA-transcribed antisense to Pax6, annotated as Pax6os1/PAX6-AS1, was upregulated by high glucose concentrations in human as well as murine beta cell lines and islets. Elevated expression was also observed in islets from mice on a high-fat diet and patients with type 2 diabetes.
View Article and Find Full Text PDFbioRxiv
December 2024
Departments of Ophthalmology and Visual Sciences and Genetics, Albert Einstein College of Medicine, Bronx, New York 10461.
Crystallin proteins serve as both essential structural and as well as protective components of the ocular lens and are required for the transparency and light refraction properties of the organ. The mouse lens crystallin proteome is represented by αA-, αB-, βA1-, βA2-, βA3-, βA4-, βB1-, βB2-, βB3-, γA-, γB-, γC-, γD-, γE, γF-, γN-, and γS-crystallin proteins encoded by 16 genes. Their mutations are responsible for lens opacification and early onset cataract formation.
View Article and Find Full Text PDFBMC Ophthalmol
January 2025
Izmir Biomedicine and Genome Center, 35340, Izmir, Türkiye.
Background: Aniridia is a rare panocular disease caused by gene mutation in the PAX6, which is essential for eye development. Aniridia is inherited in an autosomal dominant manner, but its phenotype can vary significantly among individuals with the same mutation. Animal models, such as drosophila, zebrafish, and rodents, have been used to study aniridia through Pax6 deletions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!