Encapsulated Neisseria meningitidis can invade mucosal barriers and cause systemic diseases. Activation of the innate immune system by conserved meningococcal molecules such as lipooligosaccharides (LOS) is essential for the generation of an effective host immune response. Here we show that the type C capsular polysaccharide of N. meningitidis (MCPS) inhibited LOS-induced interleukin-6 and TNF-alpha secretion from monocytes, and blocked the maturation of dendritic cells induced by LOS, while the capsular polysaccharide from group B streptococcus type III and t(4-hydroxy-3-nitrophenyl) acetyl (NP)-Ficoll had no such effect. MCPS also inhibited the LOS-induced NF-kappaB activation and phosphorylation of signalling molecules such as ERK1/2, p38 and Jun N-terminal kinase. In a direct binding assay, MCPS manifested a concentration-dependent binding to recombinant lipoprotein binding protein and CD14, the two members of the LOS receptor complex. In addition, the binding of LOS to CD14 and lipopolysaccharide binding protein was inhibited by MCPS. We established that MCPS binding to CD14 is responsible for the inhibition of LOS-mediated cell activation because MCPS inhibition of LOS was reversed when access amounts of CD14 were added to culture media of HEK293 cells expressing TLR4 and MD-2, and the magnitude of recovery in LOS stimulation correlated with the increase in CD14 concentration. These results suggest a new virulence property of meningococcal capsular polysaccharides.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1462-5822.2006.00872.x | DOI Listing |
Elife
January 2025
Laboratory of Molecular Microbiology, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland.
The type VI secretion system (T6SS) is a sophisticated, contact-dependent nanomachine involved in interbacterial competition. To function effectively, the T6SS must penetrate the membranes of both attacker and target bacteria. Structures associated with the cell envelope, like polysaccharides chains, can therefore introduce spatial separation and steric hindrance, potentially affecting the efficacy of the T6SS.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.
The genomes of human gut bacteria in the genus Bacteroides include numerous operons for biosynthesis of diverse capsular polysaccharides (CPSs). The first two genes of each CPS operon encode a locus-specific paralog of transcription elongation factor NusG (called UpxY), which enhances transcript elongation, and a UpxZ protein that inhibits noncognate UpxYs. This process, together with promoter inversions, ensures that a single CPS operon is transcribed in most cells.
View Article and Find Full Text PDFJ Infect Dis
December 2024
Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa.
Background: Group B Streptococcus (GBS) is a leading cause of neonatal meningitis and sepsis and an important cause of disease in adults. Capsular polysaccharide and protein-based GBS vaccines are currently under development.
Methods: Through national laboratory-based surveillance, invasive GBS isolates were collected from patients of all ages between 2019 and 2020.
Microb Pathog
December 2024
Department of Laboratory Medicine, Affiliated Hospital, Jiangsu University, Zhenjiang, Jiangsu 212001, China. Electronic address:
The autophagy pathway plays a crucial role in resistance to bacterial infection in the host. Salmonella enterica serovar Typhi (S. Typhi), a human restricted pathogen, causes a systemic infection known as typhoid fever.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Max Planck Institute of Colloids and Interfaces, Biomolecular Systems, Am Mühlenberg 1, Research Campus Golm, 14476, Potsdam, GERMANY.
Klebsiella pneumoniae (KP) is a common opportunistic pathogen that emerged as a new critical threat to human health, due to its hypervirulence and widespread resistance against many antibiotics, including carbapenems. Alternative intervention strategies such as vaccines are not available. Cell-surface lipopolysaccharides (LPS) and capsular polysaccharides (CPS) are attractive targets for vaccine development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!