[reaction: see text] A random copolymer containing 1,5-dialkyloxynaphthalene moieties has been synthesized using atom-transfer radical polymerization. We have shown that this polymer has the ability to form complexes with the tetracationic cyclophane cyclobis(paraquat-p-phenylene) (CBPQT(4+)) and that electrochemical reduction of the cyclophane or the addition of a competing guest for the cavity of the cyclophane results in disassembly of the supramolecular polymer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ol062846z | DOI Listing |
Chem Sci
January 2025
Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur Bangalore 560064 India https://www.jncasr.ac.in/faculty/tmaji.
Coordination-driven metallo-supramolecular polymers hold significant potential as highly efficient catalysts for photocatalytic CO reduction, owing to the covalent integration of the light harvesting unit, catalytic center and intrinsic hierarchical nanostructures. In this study, we present the synthesis, characterization, and gelation behaviour of a novel low molecular weight gelator (LMWG) integrating a benzo[1,2-:4,5-']dithiophene core with terpyridine (TPY) units alkyl amide chains (TPY-BDT). The two TPY ends of the TPY-BDT unit efficiently chelate with metal ions, enabling the formation of a metallo-supramolecular polymer that brings together the catalytic center and a photosensitizer in close proximity, maximizing catalytic efficiency for CO reduction.
View Article and Find Full Text PDFNanoscale
January 2025
State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
Solving the assembled structure of Au(I)-thiolate linear coordination polymers has been a challenging task as they generally lack good crystallinity. This has prevented the elucidation of their assembly processes at the molecular level. In this paper, selected area electron diffraction (SAED) patterns of two-dimensional (2D) Au(I)-S(CH)COOH (Au(I)-MPA) lamellae are obtained by applying cryogenic transmission electron microscopy.
View Article and Find Full Text PDFChemistry
January 2025
Northwest University, College of Chemistry and Materials Science, No.1 Xuefu Road, Guodu District, 710127, Xi'an, CHINA.
The combination of supramolecular self-assemblies and polymer science has resulted in the development of soft materials with diverse properties and applications. In particular, the coordination cages of predefined shape, size, and internal cavity can be utilized intelligently as promising building units for designing responsive and smart soft materials with dual porosity, contributing to the introduction of versatile host-guest chemistry into gels. In this review, we present the recent advancements in gels incorporating coordination cages into their networks, ranging from synthesis strategies to state-of-art applications.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Regenerative Medicine and Stem Cell Laboratory (RMS), Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502 284, Telangana, India.
Despite advancements in chronic arthritis treatment, there remains a significant demand for advanced nanotechnologies capable of efficiently delivering a wide range of therapeutic agents to provide symptomatic relief and facilitate the healing of inflamed cartilage tissue. Considering the significant impact of hypoxia on the development and maintenance of chondral tissue, replicating its effects on stem cells could be a potential approach for the treatment of osteoarthritis (OA). Cobalt is a prominent hypoxia-inducing agent, owing to its ability to activate the hypoxia-inducible factor (HIF) pathway regardless of cellular oxygen levels.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Chemistry, Jadavpur University, Kolkata, West Bengal 700032, India.
Pyrazine (tppz) and 5-sulfosalicylic acid (HSSA) mixed-bridging Cd(II)-CP, {[Cd(HSSA)(tppz)]} (), is highly luminescent, and the emission has been quenched selectively by Al in the presence of other cations, with a limit of detection (LOD) of 43.9 nM (1.18 ppb).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!