Development of more potent 4-dimethylaminopyridine analogues.

Org Lett

Department of Chemistry, The University of Texas at San Antonio, 6900 North Loop 1604 West, San Antonio, Texas 78249, USA.

Published: February 2007

[reaction: see text] The syntheses of bicyclic diaminopyridines 3 and 4 and tricyclic triaminopyridines 5 and 6, two novel series of nucleophilic catalysts, are described. Arguments are made for predicting the superiority of these catalysts over DMAP and even 2, the best esterification catalyst reported to date. The efficiencies of DMAP, PPY, and 2-6 in catalyzing the esterification of tertiary alcohols were compared. As predicted, 5 and 6 were about 6-fold more effective than DMAP and slightly better than 2.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ol062712lDOI Listing

Publication Analysis

Top Keywords

development potent
4
potent 4-dimethylaminopyridine
4
4-dimethylaminopyridine analogues
4
analogues [reaction
4
[reaction text]
4
text] syntheses
4
syntheses bicyclic
4
bicyclic diaminopyridines
4
diaminopyridines tricyclic
4
tricyclic triaminopyridines
4

Similar Publications

Annually, thousands of individuals suffer from skin injuries resulting from trauma, surgeries, or diabetes. Inadequate wound treatment can delay healing and increase the risk of severe infections. In this context, a promising synthetic polymer with potent antimicrobial properties, Poly{2-[(methacryloyloxy)ethyl]trimethylammonium chloride} (PMETAC), is synthesized and crosslinked with N,N'-Methylenebis(acrylamide) (BIS) in the presence of Chitosan (CH), a natural, biocompatible polysaccharide that promotes cell regeneration and provides additional beneficial properties.

View Article and Find Full Text PDF

The rising prevalence of multidrug-resistant (MDR) Gram-positive bacteria threatens the effectiveness of current antibiotic therapies. However, the development of new antibiotics has stagnated in recent years, highlighted the critical need for the discovery of innovative antimicrobial agents. This study aims to evaluate the antibacterial activity of naphthoquinones derived from Arnebia euchroma (Royle) Johnst (ADNs) and elucidate their underlying mechanisms.

View Article and Find Full Text PDF

1-Deoxy-d-xylulose 5-phosphate synthase (DXPS) is a unique thiamin diphosphate (ThDP)-dependent enzyme that catalyzes the formation of DXP, a branchpoint metabolite required for the biosynthesis of vitamins and isoprenoids in bacterial pathogens. DXPS has relaxed substrate specificity and utilizes a gated mechanism, equipping DXPS to sense and respond to diverse substrates. We speculate that pathogens utilize this distinct gated mechanism in different ways to support metabolic adaptation during infection.

View Article and Find Full Text PDF

Spontaneous tumor regression is a recognized phenomenon across various cancer types. Recent research emphasizes the alterations in autoantibodies against carbonic anhydrase I (CA I) (anti-CA I) levels as potential prognostic markers for various malignancies. Particularly, autoantibodies targeting CA I and II appear to induce cellular damage by inhibiting their respective protein's catalytic functions.

View Article and Find Full Text PDF

The relentless emergence of antibiotic-resistant pathogens, particularly Gram-negative bacteria, highlights the urgent need for novel therapeutic interventions. Drug-resistant infections account for approximately 5 million deaths annually, yet the antibiotic development pipeline has largely stagnated. Venoms, representing a remarkably diverse reservoir of bioactive molecules, remain an underexploited source of potential antimicrobials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!