Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In a recent paper, we suggested that the acid- or base-catalyzed dehydration of a hydrated carbonyl compound provides a suitable foundation for an organic-based pH oscillator. Here we present the first experimental example of such an oscillator in a flow reactor, utilizing the base-catalyzed dehydration of methylene glycol as a source of positive feedback (OH- autocatalysis) coupled with the base-catalyzed hydrolysis of gluconolactone for negative feedback (H+ production). The large amplitude oscillations (between pH 7 and 10) are reproduced in a kinetic model of the reaction. Such experiments present new possibilities in the design of pH oscillators.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp068534v | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!