Erythrocyte deformability and its variation in diabetes mellitus.

Indian J Exp Biol

School of Mechanical Engineering, Kyungpook National University, Daegu 702-701, Korea.

Published: January 2007

Erythrocyte deformability improves blood flow in the microvessels and in large arteries at high shear rate. The major determinants of RBC deformability include cell geometry, cell shape and internal viscosity (i.e., mean cell hemoglobin concentration and components of the erythrocyte membrane). The deformability is measured by several techniques but filtration of erythrocytes through micro-pore membranes and ektacytometry are two sensitive techniques to detect changes in erythrocytes under varied experimental and diseased conditions. Diabetes mellitus (DM) is a metabolic disorder, characterized by varying or persistent hyperglycemia, which induces several changes in the erythrocyte membrane and its cytoplasm, leading to alteration in the deformability. A decreasing trend of deformability in these patients is observed. The shape descriptor form factor, as determined by processing of erythrocyte images, increases with the increase of blood glucose levels and shows a pattern similar to filtration time of erythrocyte suspensions through cellulose membranes. Fluidity of the membrane as measured in erythrocytes of these patients is decreased. With prolonged diabetic conditions the deformability of erythrocytes is further decreased, which may complicate the flow of these cells in microvessels.

Download full-text PDF

Source

Publication Analysis

Top Keywords

erythrocyte deformability
8
diabetes mellitus
8
erythrocyte membrane
8
erythrocyte
6
deformability
6
deformability variation
4
variation diabetes
4
mellitus erythrocyte
4
deformability improves
4
improves blood
4

Similar Publications

Background: Multiple research teams have documented various abnormalities in erythrocyte properties in children with autism spectrum disorder (ASD) compared with neurotypical individuals. Reduced erythrocyte deformability, a crucial factor for microcirculation and oxygen delivery, may affect brain function. Other key factors like nitric oxide (NO) and Na,K-ATPase-regulated cation transport also play roles in both erythrocyte deformability and ASD, suggesting a possible relationship between erythrocyte parameters and autism severity.

View Article and Find Full Text PDF

Background: Published studies suggest that regular coffee consumption may reduce the risk of various diseases. However, many of these studies relied on questionnaire-based data, limiting their ability to identify the specific biological mechanisms behind the observed effects. This study focuses on controlled coffee consumption among healthy young adults to clarify its effects on erythrocyte properties.

View Article and Find Full Text PDF

Statin-treated RBC dynamics in a microfluidic porous-like network.

Microvasc Res

March 2025

FluME, Department of Mechanical Engineering, University College London, London, UK; UCL Hawkes Institute, University College London, London, UK. Electronic address:

The impact of therapeutic interventions on red blood cell (RBC) deformability and microscale transport is investigated, using statins as an exemplar. Human RBCs were treated in vitro with two commonly prescribed statins, atorvastatin and rosuvastatin, at clinically relevant concentrations. Changes in RBC deformability were quantified using a microfluidic-based ektacytometer and expressed in terms of the elongation index.

View Article and Find Full Text PDF

Hydrogen peroxide diffusion across the red blood cell membrane occurs mainly by simple diffusion through the lipid fraction.

Free Radic Biol Med

January 2025

Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, 11400, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, 11800, Uruguay. Electronic address:

Hydrogen peroxide (HO) is an oxidant produced endogenously by several enzymatic pathways. While it can cause molecular damage, HO also plays a role in regulating cell proliferation and survival through redox signaling pathways. In the vascular system, red blood cells (RBCs) are notably efficient at metabolizing HO.

View Article and Find Full Text PDF

Light on abnormal red blood cell subpopulations: Label-free optics-based approach for studying in vitro rigidified blood cells.

Spectrochim Acta A Mol Biomol Spectrosc

February 2025

Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia. Electronic address:

RBCs deformability plays a crucial role in maintaining proper blood flow and oxygen delivery throughout the body. Conventional ektacytometry fails to differentiate between variations in deformability of RBC subpopulations as the averaging measurement process obscures these differences. In this study, we introduced an approach that integrates label-free optics-based techniques (flow cytometry, phase-contrast, and two-photon excitation fluorescent microscopy) with ektacytometry to evaluate subpopulations that exhibit decreased RBCs deformability upon an in vitro oxidation using 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!