A general tendency for additivity prevailed in recombination frequencies for two-point fine-structure mapping of 14 mutants in the C cistron of Rhizobium meliloti phage 16-3, with little evidence of any marker effect. Intracistronic three-point mapping indicated that double crossovers are rare. Deletion mapping indicated that the two- and three-point mapping data gave the correct order of the mutations. A high frequency (5 to 8%) of c/c(+) heterozygotic phage progenies was observed in standard crosses. This pattern implies formation of a relatively long region of heterozygosity. Together with the results of the three-point tests, it suggests certain properties of the branch migration and resolution steps envisioned in current mechanisms of recombination.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1214141 | PMC |
http://dx.doi.org/10.1093/genetics/94.2.249 | DOI Listing |
Anim Genet
February 2025
College of Animal Science and Technology, Southwest University, Chongqing, China.
Goats typically have double coats, with the outermost coarse hairs providing protection against mechanical and radiation damage. While much attention has been paid to cashmere due to its status as a high-end textile material, there is limited information available on coarse hair. This study aimed to identify genomic variants, such as single nucleotide polymorphisms (SNPs) and insertion/deletions (indels), associated with coarse hair diameter using a genome-wide association study (GWAS).
View Article and Find Full Text PDFSci Rep
January 2025
National Clinical Research Center for Obstetric & Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
Optical genome mapping (OGM) offers high consistency in simultaneously detecting structural and copy number variants. This study aimed to retrospectively evaluate the efficacy and potential applications of OGM in preconception genetic counseling. Herein, 74 samples from 37 families were included, and their results of OGM were compared to conventional methods, namely karyotyping (KT) and chromosomal microarray analysis (CMA), which identified 27 variants across 16 positive families.
View Article and Find Full Text PDFJ Med Genet
January 2025
Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
In 1997, the published our paper on the spectrum of clinical features associated with interstitial chromosome 22q11 deletions. This copy number variation is associated with an extraordinary range of clinical features, which led initially to its association with several diagnostic labels. Since 1997 work on clinical and basic science aspects of the syndrome and the genes reduced to hemizygosity have provided a wealth of information pertaining to both best practice care and underlying biology.
View Article and Find Full Text PDFPLoS Genet
January 2025
Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Edwin S.H. Leong Centre for Healthy Aging, University of British Columbia, Vancouver, British Columbia, Canada.
Chromatin structure and DNA accessibility are partly modulated by the incorporation of histone variants. H2A.Z, encoded by the non-essential HTZ1 gene in S.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Centro de Investigación Biomédica en Red de Cáncer, CIBERONC CB16/12/00284, Instituto de Salud Carlos III, 28029 Madrid, Spain.
Recent studies have demonstrated the association between constitutional ring chromosome 21 (r(21)c) and the development of B-cell acute lymphoblastic leukemia (B-ALL) with intrachromosomal amplification of chromosome 21 (iAMP21). iAMP21 acts as a driver which is often accompanied by secondary alterations that influence disease progression. Here, we report an atypical case of iAMP21 B-ALL with a unique molecular profile in the context of r(21)c.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!