Modification of Chromosomal Aberration Yield by Postirradiation Treatment.

Genetics

Biology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee.

Published: May 1958

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1209897PMC
http://dx.doi.org/10.1093/genetics/43.3.493DOI Listing

Publication Analysis

Top Keywords

modification chromosomal
4
chromosomal aberration
4
aberration yield
4
yield postirradiation
4
postirradiation treatment
4
modification
1
aberration
1
yield
1
postirradiation
1
treatment
1

Similar Publications

Loss of Affects m6A Modification but Not Semen Characteristics in Bull Spermatozoa.

Int J Mol Sci

January 2025

State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China.

N6-methyladenosine (m6A) modification is a key methylation modification involved in reproductive processes. gene editing (MT) in cattle is known to enhance muscle mass and productivity. However, the changes in m6A modification in MT bull sperm remain poorly understood.

View Article and Find Full Text PDF

RNA editing is a significant mechanism underlying genetic variation and protein molecule alteration; C-to-U RNA editing, specifically, is important in the regulation of mammalian genetic diversity. The ability to define and limit accesses of enzymatic machinery to avoid the modification of unintended targets is key to the success of RNA editing. Identification of the core component of the apoB RNA editing holoenzyme, APOBEC, and investigation into new candidate genes encoding other elements of the complex could reveal further details regarding APOBEC-mediated mRNA editing.

View Article and Find Full Text PDF

Epigenetic Mechanisms Underlying Sex Differences in Neurodegenerative Diseases.

Biology (Basel)

January 2025

Laboratory of Medical Genetics, Department of Translational Research and of New Surgical and Medical Technologies, Medical School, University of Pisa, Via Roma 55, 56126 Pisa, Italy.

Neurodegenerative diseases are characterized by profound differences between females and males in terms of incidence, clinical presentation, and disease progression. Furthermore, there is evidence suggesting that differences in sensitivity to medical treatments may exist between the two sexes. Although the role of sex hormones and sex chromosomes in driving differential susceptibility to these diseases is well-established, the molecular alterations underlying these differences remain poorly understood.

View Article and Find Full Text PDF

Background: Vascular cognitive impairment (VCI) is a significant contributor to dementia, yet the precise mechanisms underlying the cognitive decline associated with chronic cerebral hypoperfusion (CCH) remain unclear. This study investigated the molecular and epigenetic changes in the striatum, a brain region critical for motor function and cognition, following chronic hypoperfusion using a bilateral common carotid artery stenosis (BCAS) model in mice.

Methods: RNA-seq was utilized to identify differentially expressed genes (DEGs) associated with hypoperfusion.

View Article and Find Full Text PDF

The number and variety of identified histone post-translational modifications (PTMs) are continually increasing. However, the specific consequences of each histone PTM remain largely unclear, primarily due to the lack of methods for selectively and rapidly introducing a desired histone PTM in living cells without genetic engineering. Here, we report the development of a cell-permeable histone acetylation catalyst, BAHA-LANA-PEG-CPP44, which selectively enters leukemia cells, binds to chromatin, and acetylates H2BK120 of endogenous histones in a short reaction time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!