The Miniature Complex in Drosophila Melanogaster.

Genetics

Department of Genetics, McGill University, Montreal, Canada.

Published: January 1954

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1209636PMC
http://dx.doi.org/10.1093/genetics/39.1.45DOI Listing

Publication Analysis

Top Keywords

miniature complex
4
complex drosophila
4
drosophila melanogaster
4
miniature
1
drosophila
1
melanogaster
1

Similar Publications

Predictive approaches and rules to connect and combine molecular circuit components are required to realize the potential of molecular electronics and develop miniaturized integrated circuits. To this end, we have recently demonstrated a bis(terpyridine)-based molecular breadboard with four conductance states formed by the superposition of five 2-5 ring circuits. Here, we develop a generic analytical/statistical model to describe break-junction data and use it to extract the conductance of the five embedded circuits in the bis-terpyridine-based molecular breadboard junction.

View Article and Find Full Text PDF

Compact high-bandwidth single-beam optically-pumped magnetometer for biomagnetic measurement.

Biomed Opt Express

January 2025

State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics, and Center for Quantum Information Technology, Peking University, Beijing 100871, China.

Optically-pumped magnetometer (OPM) has been of increasing interest for biomagnetic measurements due to its low cost and portability compared with superconducting quantum interference devices (SQUID). Miniaturized spin-exchange-relaxation-free (SERF) OPMs typically have limited bandwidth (less than a few hundred Hertz), making it difficult to measure high-frequency biomagnetic signals such as the magnetocardiography (MCG) signal of the mouse. Existing experiments mainly use SQUID systems to measure the signal.

View Article and Find Full Text PDF

Secure artificial intelligence at the edge.

Philos Trans A Math Phys Eng Sci

January 2025

Electrical and Computer Engineering Department, UCLA, Los Angeles, CA, USA.

Sensors for the perception of multimodal stimuli-ranging from the five senses humans possess and beyond-have reached an unprecedented level of sophistication and miniaturization, raising the prospect of making man-made large-scale complex systems that can rival nature a reality. Artificial intelligence (AI) at the edge aims to integrate such sensors with real-time cognitive abilities enabled by recent advances in AI. Such AI progress has only been achieved by using massive computing power which, however, would not be available in most distributed systems of interest.

View Article and Find Full Text PDF

Traditional magneto-optical traps are often bulky and complex, which limits their application in portable and scalable technologies. In this study, we propose a method for generating cold atoms using a transmission-grating-based magneto-optical trap (TGMOT). This approach addresses the limitations of traditional magneto-optical traps using a transmission-grating design that simplifies the optical configuration, allowing for efficient atom capture with a single incident beam.

View Article and Find Full Text PDF

Light manipulation and control are essential in various contemporary technologies, and as these technologies evolve, the demand for miniaturized optical components increases. Planar-lens technologies, such as metasurfaces and diffractive optical elements, have gained attention in recent years for their potential to dramatically reduce the thickness of traditional refractive optical systems. However, their fabrication, particularly for visible wavelengths, involves complex and costly processes, such as high-resolution lithography and dry-etching, which has limited their availability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!