Dosage compensation is a mechanism that equalizes the expression of X chromosome linked genes in males, who have one X chromosome, with that in females, who have two. In Drosophila, this is achieved by the relative hyperactivation of X-linked genes in males, as was first shown by Muller using a phenotypic assay based on adult eye color. Several genes involved in regulating dosage compensation have been identified through the isolation of mutations that are sex-specific lethals. However, because of this lethality it is not straightforward to assay the relative roles of these genes using assays based on adult phenotypes. Here this problem is circumvented using an assay based on embryonic phenotypes. These experiments indicate that dosage compensation is established early in development and demonstrate that the daughterless and Sex-lethal gene products are involved in regulating X chromosome activity at the blastoderm stage of embryogenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1203223 | PMC |
http://dx.doi.org/10.1093/genetics/117.3.477 | DOI Listing |
Nat Commun
January 2025
European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, Netherlands.
While the effect of amplification-induced oncogene expression in cancer is known, the impact of copy-number gains on "bystander" genes is less understood. We create a comprehensive map of dosage compensation in cancer by integrating expression and copy number profiles from over 8000 tumors in The Cancer Genome Atlas and cell lines from the Cancer Cell Line Encyclopedia. Additionally, we analyze 17 cancer open reading frame screens to identify genes toxic to cancer cells when overexpressed.
View Article and Find Full Text PDFFront Immunol
January 2025
Genentech, Inc., South San Francisco, CA, United States.
Objectives: This case series describes adults with aquaporin 4 immunoglobulin G-seropositive (AQP4-IgG+) neuromyelitis optica spectrum disorder (NMOSD) who switched treatment from eculizumab to satralizumab.
Methods: Case information for patients with AQP4-IgG+ NMOSD who received satralizumab for ≥6 months was obtained from US healthcare providers from April 2022 to January 2024. Patient characteristics, examination findings, diagnostic test results, treatment response, and adverse events were recorded.
J Neurol
January 2025
Clinical and Molecular Epidemiology, IRCCS San Raffaele Roma, Rome, Italy.
Objectives: To determine whether extending anti-CGRP mAb treatment beyond 3 years influences migraine course, we analyzed migraine frequency during the first month of treatment discontinuation following three 12-month treatment cycles (Ts).
Methods: This multicenter, prospective, real-world study enrolled 212 patients with high-frequency episodic migraine (HFEM) or chronic migraine (CM) who completed three consecutive Ts of subcutaneous anti-CGRP mAbs. Discontinuation periods (D1, D2, D3) were defined as the first month after T1, T2, and T3, respectively.
Sci Adv
January 2025
Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
Genes on the X chromosome are extensively expressed in the human brain. However, little is known for the X chromosome's impact on the brain anatomy, microstructure, and functional networks. We examined 1045 complex brain imaging traits from 38,529 participants in the UK Biobank.
View Article and Find Full Text PDFJ Neurol
January 2025
Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
Introduction: The large-scale approval of anti-amyloid monoclonal antibodies for treating Alzheimer's disease (AD) has raised concerns about their safety due to treatment-emergent amyloid-related imaging abnormalities (ARIA).
Methods: We present two cases of patients diagnosed with mild cognitive impairment due to AD who were enrolled in the GRADUATE I clinical trial. They received subcutaneous gantenerumab every two weeks during the study period.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!