The procedure for the selection of a temperature-sensitive recombination mutant in Drosophila is described. Use of this procedure has led to the recovery of three alleles at a new recombination locus called rec-1, located within the region of chromosome 3 circumscribed by Deficiency (3R)sbd(105). One allele, rec-1(26), is temperature sensitive, and the other two alleles, rec-1(6) and rec-1(16), are temperature insensitive. Gene dosage studies reveal rec-1(26) to be a leaky mutant with greater recombination activity in two doses than in one. The other two alleles show no dose response, implying that they may be null mutants. The temperature response curves of rec-1(26) as a homozygote and in heteroallelic combination with rec-1(16) suggest that the sharp decrease in recombination between 28 degrees and 31 degrees indicates temperature denaturation of an enzyme or other protein specified by the mutant and associated with the recombination process. The ability of small changes in temperature to reverse or abolish polarity in recombination along the X chromosome arm in rec-1( 26)/rec-1(16) females brings into question the use of the "polarity" criterion to partition mutants into two functional types, i.e., precondition mutants that display polarity and exchange mutants that do not. Evidence that rec-1 may be part of a complex locus residing in a chromosome segment harboring a variety of recombination-related genes is presented.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1202415 | PMC |
http://dx.doi.org/10.1093/genetics/108.2.425 | DOI Listing |
Angew Chem Int Ed Engl
March 2025
South China University of Technology, State Key Laboratory of Luminescent Materials and Devices, Wushan Road 381, 510640, Guangzhou, CHINA.
Energy loss (Eloss) between optical energy gap (Eg) and open-circuit voltage (eVoc) sets efficiency upper limits for organic solar cells (OSCs). Nevertheless, further breaking the limit of Eloss in OSCs is challenging, especially via structurally simple materials in binary OSCs. Herein, a structurally simple non-halogenated polymer donor, namely PBDCT, is developed for realizing high-efficiency OSCs with record-breaking Eloss.
View Article and Find Full Text PDFTrends Biotechnol
March 2025
Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, PR China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, PR China; Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, PR China. Electronic address:
The methylotrophic yeast Pichia pastoris (also known as Komagataella pastoris) is an ideal host for producing proteins and natural products. Enhancing homologous recombination (HR) is helpful for improving the precision of genome editing, but results in stress to cellular fitness and is harmful for industrial applications. To overcome these challenges, we developed a tetracycline repressor protein (TetR)/tetO2 inducible system to dynamically regulate the HR-related gene RAD52 in P.
View Article and Find Full Text PDFJ Cosmet Laser Ther
March 2025
Department of Dermatology, The University of California, San Diego, USA.
Delayed inflammatory nodules (DIN) after soft-tissue filler injection may occur after infections, vaccinations, or procedures. We report a DIN from predominantly low-molecular-weight HA (PLMW-HA) filler secondary to COVID-19 infection that was resistant to conservative management, requiring intralesional combination therapy with triamcinolone, 5-fluorouracil, and recombinant human hyaluronidase for resolution.
View Article and Find Full Text PDFFEMS Yeast Res
March 2025
State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
Komagataella phaffii has gained recognition as a versatile platform for recombinant protein production, with applications covering biopharmaceuticals, industrial enzymes, food additives, etc. Its advantages include high-level protein expression, moderate post-translational modifications, high-density cultivation, and cost-effective methanol utilization. Nevertheless, it still faces challenges for the improvement of production efficiency and extension of applicability.
View Article and Find Full Text PDFLangmuir
March 2025
Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province. School of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, P. R. China.
The photoelectrochemical properties of hematite-based photoanodes are hindered by severe carrier recombination and poor reaction activity, which is a major challenge. Herein, we coupled zirconium-doped α-FeO (Zr:FeO) and phosphating cobalt molybdate electrocatalyst (P-CoMoO) to ameliorate the above difficulties. The conductivity and carrier density of hematite significantly increase by Zr doping.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!