The specific phenotypes and progression to maturity of primary cortical neurons in long-term culture correlate well with neurons in vivo. Utilizing a model of neuronal injury in long-term cultures at 21 days in vitro (DIV), we have identified a distinct population of neurons that translocate into the injury site. 5-bromo-2'-deoxyUridine (BrdU) incorporation studies demonstrated that neurons with the capacity to translocate were 21 days old. However, this motile ability is not consistent with the traditional view of the maturation and structural stability of neurons in long-term culture. Therefore, we examined the neurons' cytoskeletal profile using immunocytochemistry, to establish relative stage of maturation and phenotype. Expression of marker proteins including beta-III-tubulin, alpha-internexin, NF-L and NF-M, tau and L1 indicated the neurons were differentiated, and in some cases polarized. The neurons did not immunolabel with NF-H or MAP2, which might suggest they had not reached the level of maturity of other neurons in culture. They did not express the microtubule-associated migration marker doublecortin (DCX). Cytoskeletal disrupting agents were used to further investigate the role of the microtubule cytoskeleton in translocation, and microtubule destabilization significantly enhanced aspects of their motility. Finally, molecular guidance cues affected their motility in a similar manner to that reported for both axon guidance and early neuron migration. Therefore, this study has identified and characterized a population of motile neurons in vitro that have the capacity to migrate into a site of injury. These studies provide new information on the structurally dynamic features of subsets of neurons.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cm.20182DOI Listing

Publication Analysis

Top Keywords

neurons long-term
12
neurons
11
population motile
8
motile neurons
8
long-term culture
8
identification characterization
4
characterization population
4
long-term
4
long-term cortical
4
culture
4

Similar Publications

Background: Traumatic brain injury (TBI) is a leading cause of mortality worldwide and often results in substantial cognitive, motor, and psychological impairments, triggering oxidative stress, neuroinflammation, and neurodegeneration. This study examined the neuroprotective effects of azithromycin (AZI) in TBI.

Methods: TBI was induced in rats using the weight-drop method.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is one of the primary causes of mortality and disability, with arterial blood pressure being an important factor in the clinical management of TBI. Spontaneously hypertensive rats (SHRs), widely used as a model of essential hypertension and vascular dementia, demonstrate dysfunction of the hypothalamic-pituitary-adrenal axis, which may contribute to glucocorticoid-mediated hippocampal damage. The aim of this study was to assess acute post-TBI seizures, delayed mortality, and hippocampal pathology in SHRs and normotensive Sprague Dawley rats (SDRs).

View Article and Find Full Text PDF

Botulinum toxin (BoNT), the most potent substance known to humans, likely evolved not to kill but to serve other biological purposes. While its use in cosmetic applications is well known, its medical utility has become increasingly significant due to the intricacies of its structure and function. The toxin's structural complexity enables it to target specific cellular processes with remarkable precision, making it an invaluable tool in both basic and applied biomedical research.

View Article and Find Full Text PDF

Functional and Structural Changes in the Inner Ear and Cochlear Hair Cell Loss Induced by Hypergravity.

Int J Mol Sci

January 2025

Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Inha University, Incheon 22332, Republic of Korea.

Gravitational changes have been shown to cause significant abnormalities in various body systems, including the cardiovascular, immune, vestibular, and musculoskeletal systems. While numerous studies have examined the response of the vestibular system to gravitational stimulation, research on functional changes in the peripheral inner ear remains limited. The inner ear comprises two closely related structures: the vestibule and cochlea.

View Article and Find Full Text PDF

Stroke is a major cause of mortality and long-term disability worldwide, making early diagnosis and effective treatment crucial for reducing its impact. In response to the limited efficacy of current treatments, alternative therapeutic strategies, such as novel biomarkers and therapies, are emerging to address this critical unmet medical need. MicroRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression at the post-transcriptional level.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!