Surface structure of implants influences bone response and interfacial shear strength between implants and bone. The aim of this study was to find topographical parameters that correlate with the interfacial shear strength. Two groups of sand-blasted titanium screws were implanted in 17 sheep tibia, each for 2-52 weeks: (A) acid pickled with HF/HNO(3); (B) acid etched with HCl/H(2)SO(4). Screw removal torque was measured and surface topography of both implant groups was studied by scanning electron microscopy, optical profilometry, and scanning probe microscopy. The roughness as well as the surface area of type A surface was higher in the scan region of 100 microm, but the microroughness and surface area of type B surface was higher in the scan region of 10 microm. A significantly higher removal torque (interfacial shear strength) of the surface treatment type B (412 +/- 60 Ncm) compared to surface treatment type A (157 +/- 33 Ncm) was found after 52 weeks of implantation in sheep due to differences in microroughness of both types of screws. It was also shown that the specification of the parameters Delta(a), R(a) and R(q) was not sufficient to characterize the properties of the implant surfaces. The analysis of R(q) parameter over wavelengths was required to characterize the size, shape and distribution of the implant surface structures.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.b.30734DOI Listing

Publication Analysis

Top Keywords

interfacial shear
16
shear strength
16
surface
10
implants bone
8
microroughness surface
8
removal torque
8
surface area
8
area type
8
type surface
8
surface higher
8

Similar Publications

This study aimed to compare the bonding efficacy three bioactive self-adhesive restorative systems to dentin. A total of 80 permanent human molars were utilized in this study. The occlusal enamel was removed to exposed mid-coronal dentin; 40 molars were used for microshear bond strength testing, while the remaining molars were used for micromorphological analysis of restoration/dentin interface.

View Article and Find Full Text PDF

Optimizing Nanobubble Production in Ceramic Membranes: Effects of Pore Size, Surface Hydrophobicity, and Flow Conditions on Bubble Characteristics and Oxygenation.

Langmuir

January 2025

John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 Martin Luther King Blvd., Newark, New Jersey 07102, United States.

Precise control of nanobubble size is essential for optimizing the efficiency and performance of nanobubble applications across diverse fields, such as agriculture, water treatment, and medicine. Producing fine bubbles, including nanobubbles, is commonly achieved by purging gas through porous media, such as ceramic or polymer membranes. Many operational factors and membrane properties can significantly influence nanobubble production and characteristics.

View Article and Find Full Text PDF

Friction stir spot welding (FSSW) technology relies on the generation of frictional heat during the rotation of the welding tool in contact with the workpiece as well as the stirring effect of the tool pin to produce solid-state spot joints, especially for lightweight materials. Although FSSW offers significant advantages over traditional fusion welding, the oxidation of the interfacial bond line remains one of the most challenging issues, affecting the quality and strength of the joint under both static and cyclic loading conditions. In this experimental study, inert argon gas was employed to surround the joint, aiming to prevent or minimize the formation of the interfacial oxides.

View Article and Find Full Text PDF

Mechanical force-induced interlayer sliding in interfacial ferroelectrics.

Nat Commun

January 2025

Key Laboratory of Polar Materials and Devices (Ministry of Education), Shanghai Center of Brain-Inspired Intelligent Materials and Devices, Department of Electronics, East China Normal University, Shanghai, 200241, China.

Moiré superlattices in two-dimensional stacks have attracted worldwide interest due to their unique electronic properties. A typical example is the moiré ferroelectricity, where adjacent moirés exhibit opposite spontaneous polarization that can be switched through interlayer sliding. However, in contrast to ideal regular ferroelectric moiré domains (equilateral triangles) built in most theoretical models, the unavoidable irregular moiré supercells (non-equilateral triangles) induced by external strain fields during the transfer process have been given less attention.

View Article and Find Full Text PDF

Hypothesis: We hypothesise that superhydrophobic surfaces can achieve effective interfacial slip and drag reduction even under non-Newtonian, shear-thinning fluid flows. Unlike Newtonian fluids, where slip is primarily influenced by viscosity and surface tension, we anticipate that the shear-thinning nature of these fluids may enhance slip length and drag reduction.

Experiments And Numerical Analysis: The superhydrophobic surfaces used in this study, featuring a dual-scale random topography, were fabricated via a spray coating process, and low-concentration xanthan gum solutions (50-250 ppm) were used as model shear-thinning fluids of low elasticity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!