A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Malignant and benign breast masses on 3D US volumetric images: effect of computer-aided diagnosis on radiologist accuracy. | LitMetric

Purpose: To retrospectively investigate the effect of using a custom-designed computer classifier on radiologists' sensitivity and specificity for discriminating malignant masses from benign masses on three-dimensional (3D) volumetric ultrasonographic (US) images, with histologic analysis serving as the reference standard.

Materials And Methods: Informed consent and institutional review board approval were obtained. Our data set contained 3D US volumetric images obtained in 101 women (average age, 51 years; age range, 25-86 years) with 101 biopsy-proved breast masses (45 benign, 56 malignant). A computer algorithm was designed to automatically delineate mass boundaries and extract features on the basis of segmented mass shapes and margins. A computer classifier was used to merge features into a malignancy score. Five experienced radiologists participated as readers. Each radiologist read cases first without computer-aided diagnosis (CAD) and immediately thereafter with CAD. Observers' malignancy rating data were analyzed with the receiver operating characteristic (ROC) curve.

Results: Without CAD, the five radiologists had an average area under the ROC curve (A(z)) of 0.83 (range, 0.81-0.87). With CAD, the average A(z) increased significantly (P = .006) to 0.90 (range, 0.86-0.93). When a 2% likelihood of malignancy was used as the threshold for biopsy recommendation, the average sensitivity of radiologists increased from 96% to 98% with CAD, while the average specificity for this data set decreased from 22% to 19%. If a biopsy recommendation threshold could be chosen such that sensitivity would be maintained at 96%, specificity would increase to 45% with CAD.

Conclusion: Use of a computer algorithm may improve radiologists' accuracy in distinguishing malignant from benign breast masses on 3D US volumetric images.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2800986PMC
http://dx.doi.org/10.1148/radiol.2423051464DOI Listing

Publication Analysis

Top Keywords

breast masses
12
volumetric images
12
malignant benign
8
benign breast
8
masses volumetric
8
computer-aided diagnosis
8
computer classifier
8
masses benign
8
data set
8
computer algorithm
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!