c-Jun, a major transcription factor in the activating protein 1 (AP-1) family of regulatory proteins, is activated by many physiologic and pathologic stimuli. However, whether c-jun is regulated by epigenetic modification of chromatin structure is not clear. We showed here that c-jun was transcriptionally repressed in response to osmotic stress via a truncated HDAC3 generated by caspase-7-dependent cleavage at aspartic acid 391. The activation of caspase-7, which is independent of cytochrome c release and activation of caspase-9 and caspase-12, depends on activation of caspase-8, which in turn requires MEK2 activity and secretion of FAS ligand. The cell apoptosis induced by the truncated HDAC3 or enhanced by c-Jun deficiency during osmotic stress was suppressed by exogenous expression of c-Jun, indicating that the downregulation of c-Jun by HDAC3-dependent transcriptional repression plays a role in regulating cell survival and apoptosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1829326 | PMC |
http://dx.doi.org/10.1016/j.molcel.2007.01.005 | DOI Listing |
Histone deacetylases (HDACs) repress transcription by catalyzing the removal of acetyl groups from histones. Class 1 HDACs are activated by inositol phosphate signaling molecules , but it is unclear if this regulation occurs in human cells. Inositol Polyphosphate Multikinase (IPMK) is required for production of inositol hexakisphosphate (IP6), pentakisphosphate (IP5) and certain tetrakisphosphate (IP4) species, all known activators of Class 1 HDACs .
View Article and Find Full Text PDFCell Rep
March 2024
Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA; UC Irvine Center for Addiction Neuroscience, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697, USA; Center for the Neurobiology of Learning and Memory, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA 92697, USA. Electronic address:
Drugs of abuse can persistently change the reward circuit in ways that contribute to relapse behavior, partly via mechanisms that regulate chromatin structure and function. Nuclear orphan receptor subfamily4 groupA member2 (NR4A2, also known as NURR1) is an important effector of histone deacetylase 3 (HDAC3)-dependent mechanisms in persistent memory processes and is highly expressed in the medial habenula (MHb), a region that regulates nicotine-associated behaviors. Here, expressing the Nr4a2 dominant negative (Nurr2c) in the MHb blocks reinstatement of cocaine seeking in mice.
View Article and Find Full Text PDFSci Adv
March 2023
Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA USA.
HDAC3 is one of the main targets of histone deacetylase (HDAC) inhibitors in clinical development as cancer therapies, yet the in vivo role of HDAC3 in solid tumors is unknown. We identified a critical role for HDAC3 in -mutant lung cancer. Using genetically engineered mouse models (GEMMs), we found that HDAC3 is required for lung tumor growth in vivo.
View Article and Find Full Text PDFCancer Res Commun
December 2022
Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA.
Proteasome inhibitors have become the standard of care for multiple myeloma (MM). Blocking protein degradation particularly perturbs the homeostasis of short-lived polypeptides such as transcription factors and epigenetic regulators. To determine how proteasome inhibitors directly impact gene regulation, we performed an integrative genomics study in MM cells.
View Article and Find Full Text PDFCell Signal
December 2020
CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, Telangana, India. Electronic address:
Deregulated DNA methylation and post-translational histone modifications are majorly associated with cancer progression. Histone modification regulates the gene expression patterns that contribute to the emergence of sporadic cancers. Histone deacetylases (HDACs) act as erasers of acetylation marks, and their functions are often deregulated in cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!