This paper presents a method for classification of structural brain magnetic resonance (MR) images, by using a combination of deformation-based morphometry and machine learning methods. A morphological representation of the anatomy of interest is first obtained using a high-dimensional mass-preserving template warping method, which results in tissue density maps that constitute local tissue volumetric measurements. Regions that display strong correlations between tissue volume and classification (clinical) variables are extracted using a watershed segmentation algorithm, taking into account the regional smoothness of the correlation map which is estimated by a cross-validation strategy to achieve robustness to outliers. A volume increment algorithm is then applied to these regions to extract regional volumetric features, from which a feature selection technique using support vector machine (SVM)-based criteria is used to select the most discriminative features, according to their effect on the upper bound of the leave-one-out generalization error. Finally, SVM-based classification is applied using the best set of features, and it is tested using a leave-one-out cross-validation strategy. The results on MR brain images of healthy controls and schizophrenia patients demonstrate not only high classification accuracy (91.8% for female subjects and 90.8% for male subjects), but also good stability with respect to the number of features selected and the size of SVM kernel used.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TMI.2006.886812 | DOI Listing |
Int J Med Inform
January 2025
School of Geography and the Environment, University of Oxford, South Parks Road, Oxford OX1 3QY, United Kingdom. Electronic address:
Background: Coronavirus Disease 2019 (COVID-19), caused by the SARS-CoV-2 virus, emerged as a global health crisis in 2019, resulting in widespread morbidity and mortality. A persistent challenge during the pandemic has been the accuracy of reported epidemic data, particularly in underdeveloped regions with limited access to COVID-19 test kits and healthcare infrastructure. In the post-COVID era, this issue remains crucial.
View Article and Find Full Text PDFBioanalysis
January 2025
US FDA, Silver Spring, MD, USA.
The 18 Workshop on Recent Issues in Bioanalysis (18 WRIB) took place in San Antonio, TX, USA on May 6-10, 2024. Over 1100 professionals representing pharma/biotech companies, CROs, and multiple regulatory agencies convened to actively discuss the most current topics of interest in bioanalysis. The 18 WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week to allow an exhaustive and thorough coverage of all major issues in bioanalysis of biomarkers, immunogenicity, gene therapy, cell therapy and vaccines.
View Article and Find Full Text PDFMolecules
January 2025
Bioorganic Chemistry Laboratory, Universidad Militar Nueva Granada, Cajicá 250247, Colombia.
Watercress (), a freshwater aquatic plant in the Brassicaceae family, is characterized by its high content of specialized metabolites, including flavonoids, glucosinolates, and isothiocyanates. Traditionally, commercial cultivation is conducted in submerged beds using river or spring water, often on soil or gravel substrates. However, these methods have significant environmental impacts, such as promoting eutrophication due to excessive fertilizer use and contaminating water sources with pesticides.
View Article and Find Full Text PDFCancers (Basel)
January 2025
Department of Neurosurgery, Río Hortega University Hospital, 47014 Valladolid, Spain.
Background: Accurate prognostic models are essential for optimizing treatment strategies for glioblastoma, the most aggressive primary brain tumor. While other neuroimaging modalities have demonstrated utility in predicting overall survival (OS), intraoperative ultrasound (iUS) remains underexplored for this purpose. This study aimed to evaluate the prognostic potential of iUS radiomics in glioblastoma patients in a multi-institutional cohort.
View Article and Find Full Text PDFBreast Cancer Res
January 2025
Department of Gynecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander University of Erlangen-Nuremberg, Erlangen, Germany.
Background: Pathological complete response (pCR) is an established surrogate marker for prognosis in patients with breast cancer (BC) after neoadjuvant chemotherapy. Individualized pCR prediction based on clinical information available at biopsy, particularly immunohistochemical (IHC) markers, may help identify patients who could benefit from preoperative chemotherapy.
Methods: Data from patients with HER2-negative BC who underwent neoadjuvant chemotherapy from 2002 to 2020 (n = 1166) were used to develop multivariable prediction models to estimate the probability of pCR (pCR-prob).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!