COMPARE: classification of morphological patterns using adaptive regional elements.

IEEE Trans Med Imaging

Section of Biomedical Image Analysis, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA.

Published: January 2007

This paper presents a method for classification of structural brain magnetic resonance (MR) images, by using a combination of deformation-based morphometry and machine learning methods. A morphological representation of the anatomy of interest is first obtained using a high-dimensional mass-preserving template warping method, which results in tissue density maps that constitute local tissue volumetric measurements. Regions that display strong correlations between tissue volume and classification (clinical) variables are extracted using a watershed segmentation algorithm, taking into account the regional smoothness of the correlation map which is estimated by a cross-validation strategy to achieve robustness to outliers. A volume increment algorithm is then applied to these regions to extract regional volumetric features, from which a feature selection technique using support vector machine (SVM)-based criteria is used to select the most discriminative features, according to their effect on the upper bound of the leave-one-out generalization error. Finally, SVM-based classification is applied using the best set of features, and it is tested using a leave-one-out cross-validation strategy. The results on MR brain images of healthy controls and schizophrenia patients demonstrate not only high classification accuracy (91.8% for female subjects and 90.8% for male subjects), but also good stability with respect to the number of features selected and the size of SVM kernel used.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TMI.2006.886812DOI Listing

Publication Analysis

Top Keywords

cross-validation strategy
8
compare classification
4
classification morphological
4
morphological patterns
4
patterns adaptive
4
adaptive regional
4
regional elements
4
elements paper
4
paper presents
4
presents method
4

Similar Publications

The feasibility of using machine learning to predict COVID-19 cases.

Int J Med Inform

January 2025

School of Geography and the Environment, University of Oxford, South Parks Road, Oxford OX1 3QY, United Kingdom. Electronic address:

Background: Coronavirus Disease 2019 (COVID-19), caused by the SARS-CoV-2 virus, emerged as a global health crisis in 2019, resulting in widespread morbidity and mortality. A persistent challenge during the pandemic has been the accuracy of reported epidemic data, particularly in underdeveloped regions with limited access to COVID-19 test kits and healthcare infrastructure. In the post-COVID era, this issue remains crucial.

View Article and Find Full Text PDF

The 18 Workshop on Recent Issues in Bioanalysis (18 WRIB) took place in San Antonio, TX, USA on May 6-10, 2024. Over 1100 professionals representing pharma/biotech companies, CROs, and multiple regulatory agencies convened to actively discuss the most current topics of interest in bioanalysis. The 18 WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week to allow an exhaustive and thorough coverage of all major issues in bioanalysis of biomarkers, immunogenicity, gene therapy, cell therapy and vaccines.

View Article and Find Full Text PDF

Watercress (), a freshwater aquatic plant in the Brassicaceae family, is characterized by its high content of specialized metabolites, including flavonoids, glucosinolates, and isothiocyanates. Traditionally, commercial cultivation is conducted in submerged beds using river or spring water, often on soil or gravel substrates. However, these methods have significant environmental impacts, such as promoting eutrophication due to excessive fertilizer use and contaminating water sources with pesticides.

View Article and Find Full Text PDF

Background: Accurate prognostic models are essential for optimizing treatment strategies for glioblastoma, the most aggressive primary brain tumor. While other neuroimaging modalities have demonstrated utility in predicting overall survival (OS), intraoperative ultrasound (iUS) remains underexplored for this purpose. This study aimed to evaluate the prognostic potential of iUS radiomics in glioblastoma patients in a multi-institutional cohort.

View Article and Find Full Text PDF

Background: Pathological complete response (pCR) is an established surrogate marker for prognosis in patients with breast cancer (BC) after neoadjuvant chemotherapy. Individualized pCR prediction based on clinical information available at biopsy, particularly immunohistochemical (IHC) markers, may help identify patients who could benefit from preoperative chemotherapy.

Methods: Data from patients with HER2-negative BC who underwent neoadjuvant chemotherapy from 2002 to 2020 (n = 1166) were used to develop multivariable prediction models to estimate the probability of pCR (pCR-prob).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!