The fate of nine-mole nonylphenol ethoxylate (NPE9) discharged to an on-site wastewater disposal (septic) system was the focus of a 2-year investigation. Known amounts of NPE9-based detergent were metered daily into the plumbing at a single-family household. The ethoxylate-containing wastewater was discharged to the highly anoxic environment of a 4500-L septic tank before distribution to the oxic subsurface via 100 m of leach line. After 180 days of injecting detergent to the septic system, periodic soil pore water and/or groundwater samples were collected and analyzed for nonylphenol ethoxylates (NPEs), nonylphenol ether carboxylates, and nonylphenol. The NPE9 and degradation intermediates that were measured were reduced by 99.99% on a molar basis. An 18% reduction in molar concentration within the septic tank was observed. This was followed by a further 96.7% reduction of molar concentration within the leach lines. As the pore water migrated through the vadose zone, an additional 99.69% reduction in molar concentration was measured between the bottom of the leach lines (leach line effluent) and the lowest vadose zone monitoring location. The results obtained from these analyses indicate that degradation of the surfactant occurs within the anoxic portion of the disposal system with continued rapid biodegradation in the oxic unsaturated zone. Only trace amounts of degradation residuals were detected in soil pore water. The concentration and distribution of various degradation intermediates with respect to location, time, and ambient physical conditions were evaluated. Rapid and systematic degradation of NPE in on-site wastewater disposal systems was documented.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2175/106143005x72966 | DOI Listing |
Se Pu
January 2025
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
17-Estradiol (E2) is a natural steroidal estrogen essential for a variety of physiological functions in organisms. However, external E2, which is renowned for its potent biological effects, is also considered to be an endocrine-disrupting compound (EDC) capable of disturbing the normal operation of the endocrine system, even at nanogram-per-liter (ng/L) concentrations. Studies have revealed that medical and livestock wastewater can be contaminated with E2, which poses potential risks to human health.
View Article and Find Full Text PDFFood Chem
December 2024
School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China. Electronic address:
Herein, a "lab-on-an-AIE@Ln/ICP" sensor array was constructed by employing aggregation-induced emission carbon quantum dots (AIE-CQDs) as the guest and Eu/GMP ICP as the host. Based on the antenna effect (AE) and reductive photo-induced electron transfer (r-PET) between CQDs@Eu/GMP ICPs and tetracyclines (TCs), the as-constructed sensor produced satisfactorily dual-emitting fluorescence. By combining pH regulation with principal component analysis (PCA), the underlying fingerprinting patterns realized the specific identification and quantitation of six TCs in animal farm wastewater, milks and milk-derivative products.
View Article and Find Full Text PDFChemosphere
December 2024
Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454, Marne-la-Vallée, Cedex 2, France. Electronic address:
Water Sci Technol
November 2024
École de technologie supérieure, Montréal, QC, Canada.
Environmental challenges in low-income countries, such as Haiti, persist due to inadequate sanitation infrastructure. This study assesses the environmental impacts of nine on-site sanitation systems to identify those with the least environmental impacts and explore improvement options. Nine scenarios were developed, each representing different systems for managing 1 ton of fecal sludge over 1 year.
View Article and Find Full Text PDFEnviron Monit Assess
November 2024
Department of Environmental Health, School of Public Health, University of Botswana, Gaborone, Botswana.
Pit latrines represent the predominant form of on-site sanitation in Botswana, posing unique challenges in faecal sludge (FS) management. The key concerns revolve around FS extraction, treatment, and safe disposal. Currently, co-treatment with wastewater is the primary approach, but it strains wastewater treatment plants (WWTPs) and compromises effluent quality.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!