Effects of elevated temperature and atmospheric CO2 concentration ([CO2]) on spring phenology of mature field-grown Norway spruce (Picea abies (L.) Karst.) trees were followed for three years. Twelve whole-tree chambers (WTC) were installed around individual trees and used to expose the trees to a predicted future climate. The predicted climate scenario for the site, in the year 2100, was 700 micromol mol-1 [CO2], and an air temperature 3 degrees C higher in summer and 5 degrees C higher in winter, compared with current conditions. Four WTC treatments were imposed using combinations of ambient and elevated [CO2] and temperature. Control trees outside the WTCs were also studied. Bud development and shoot extension were monitored from early spring until the termination of elongation growth. Elevated air temperature hastened both bud development and the initiation and termination of shoot growth by two to three weeks in each study year. Elevated [CO2] had no significant effect on bud development patterns or the length of the shoot growth period. There was a good correlation between temperature sum (day degrees>or=0 degrees C) and shoot elongation, but a precise timing of bud burst could not be derived by using an accumulation of temperature sums.

Download full-text PDF

Source
http://dx.doi.org/10.1093/treephys/27.2.301DOI Listing

Publication Analysis

Top Keywords

shoot growth
12
bud development
12
bud burst
8
norway spruce
8
air temperature
8
degrees higher
8
elevated [co2]
8
temperature
7
bud
5
shoot
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!