A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Contained metabolic engineering in tomatoes by expression of carotenoid biosynthesis genes from the plastid genome. | LitMetric

Contained metabolic engineering in tomatoes by expression of carotenoid biosynthesis genes from the plastid genome.

Plant J

Max-Planck-Institut für Molekulare Pflanzenphysiologie (MPI-MP), Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany.

Published: January 2007

Applications of chloroplast engineering in agriculture and biotechnology will depend critically on success in extending the crop range of chloroplast transformation, and on the feasibility of expressing transgenes in edible organs (such as tubers and fruits), which often are not green and thus are much less active in chloroplast gene expression. We have improved a recently developed chloroplast-transformation system for tomato plants and applied it to engineering one of the central metabolic pathways in fruits: carotenoid biosynthesis. We report that plastid expression of a bacterial lycopene beta-cyclase gene results in herbicide resistance and triggers conversion of lycopene, the main storage carotenoid of tomatoes, to beta-carotene, resulting in fourfold enhanced pro-vitamin A content of the fruits. Our results demonstrate the feasibility of engineering nutritionally important biochemical pathways in non-green plastids by transformation of the chloroplast genome.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-313X.2006.02960.xDOI Listing

Publication Analysis

Top Keywords

carotenoid biosynthesis
8
contained metabolic
4
engineering
4
metabolic engineering
4
engineering tomatoes
4
tomatoes expression
4
expression carotenoid
4
biosynthesis genes
4
genes plastid
4
plastid genome
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!