Earliest spontaneous activity differentially regulates neocortical GABAergic interneuron subpopulations.

Eur J Neurosci

Otto-von-Guericke University, Department of Developmental Physiology, Institute of Physiology, Leipziger Strasse 44, D-39120 Magdeburg, Germany.

Published: January 2007

Although less than one quarter of all neurons in the cerebral cortex are GABAergic, these neurons are morphologically diverse and their physiological complexity decisively moulds the network physiology. An important question is how different subpopulations of GABAergic neurons are regulated numerically during development. In rat neocortical cultures, neuronal precursors continue to divide, generating both GABAergic and non-GABAergic neurons. In vitro generated GABAergic neurons form a population of uniquely small, mostly fusiform neurons that differ in size and morphology from older, in situ generated, large stellate GABAergic neurons. In a large series of experiments we investigated the impact of neuronal activity on the development of these two subpopulations of GABA interneurons present in cortical networks during the first 2 weeks in vitro. Here we show that a moderate increase in the generation of GABAergic neurons was achieved by blocking activity with tetrodotoxin, indicating that intrinsic spontaneous activity inhibits GABAergic neurogenesis in culture. Antagonists to ionotropic glutamate receptor and/or GABA(A) receptor did not significantly alter GABAergic generation but agonists to these receptors showed a time-sensitive regulation of the size of small and large GABAergic neuronal subpopulations. Further, our results indicate that alterations of cell generation by activity manipulations might be overwritten by later activity effects on the survival of GABAergic cell populations.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1460-9568.2006.05251.xDOI Listing

Publication Analysis

Top Keywords

gabaergic neurons
20
gabaergic
11
spontaneous activity
8
neurons
8
activity
6
earliest spontaneous
4
activity differentially
4
differentially regulates
4
regulates neocortical
4
neocortical gabaergic
4

Similar Publications

Basal forebrain innervation of the amygdala: an anatomical and computational exploration.

Brain Struct Funct

January 2025

Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, Bebek, 34342, Istanbul, Turkey.

Theta oscillations of the mammalian amygdala are associated with processing, encoding and retrieval of aversive memories. In the hippocampus, the power of the network theta oscillation is modulated by basal forebrain (BF) GABAergic projections. Here, we combine anatomical and computational approaches to investigate if similar BF projections to the amygdaloid complex provide an analogous modulation of local network activity.

View Article and Find Full Text PDF

Astrocytes critically shape whole-brain structure and function by forming extensive gap junctional networks that intimately and actively interact with neurons. Despite their importance, existing computational models of whole-brain activity ignore the roles of astrocytes while primarily focusing on neurons. Addressing this oversight, we introduce a biophysical neural mass network model, designed to capture the dynamic interplay between astrocytes and neurons via glutamatergic and GABAergic transmission pathways.

View Article and Find Full Text PDF

Aim: Despite dysfunctional vasoactive intestinal polypeptide-positive interneurons (VIP-INs) being linked to the emergence of neurodevelopmental disorders, the temporal profile of VIP-IN functional maturation and cortical network integration remains unclear.

Methods: Postnatal VIP-IN development was traced with patch clamp experiments in the somatosensory cortex of Vip-IRES-cre x tdTomato mice. Age groups were chosen during barrel field formation, before and after activation of main sensory inputs, and in adult animals (postnatal days (P) P3-4, P8-10, P14-16, and P30-36).

View Article and Find Full Text PDF

There is growing interest to investigate classic psychedelics as potential therapeutics for mental illnesses. Previous studies have demonstrated that one dose of psilocybin leads to persisting neural and behavioral changes. The durability of psilocybin's effects suggests that there are likely alterations of gene expression at the transcriptional level.

View Article and Find Full Text PDF

Electroencephalographic (EEG) recordings in individuals with Fragile X Syndrome (FXS) and the mouse model of FXS ( KO) display cortical hyperexcitability at rest, as well as deficits in sensory-driven cortical network synchrony. A form of circuit hyperexcitability is observed in cortical slices of KO mice as prolonged persistent activity, or Up, states. It is unknown if the circuit mechanisms that cause prolonged Up states contribute to FXS-relevant EEG phenotypes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!