Spatial frequency difference between textures interferes with brightness perception.

Vision Res

Department of Psychology, PO Box 9 (Siltavuorenpenger 20 D), University of Helsinki, Helsinki 00014, Finland.

Published: February 2007

Abrupt changes in luminance trigger and restrict brightness filling-in. If brightness was actively filled-in and mediated by cells signaling both luminance borders and surface brightness, then brightness spreading could also get disrupted by changes in texture. We measured psychophysically the brightness of a uniform luminance disk, which was segmented into two parts by different textures. The brightness of the central part of the disk was substantially reduced, and the reduction depended on spatial frequency, but not on the orientation difference between the textures. The results show that texture borders are able to block brightness filling-in. The bandwidth of brightness spreading was estimated to be approximately 1.5 octaves. This suggests that brightness information spreads only between neurons of similar spatial frequency characteristics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.visres.2006.11.016DOI Listing

Publication Analysis

Top Keywords

spatial frequency
12
brightness
10
difference textures
8
brightness filling-in
8
brightness spreading
8
frequency difference
4
textures interferes
4
interferes brightness
4
brightness perception
4
perception abrupt
4

Similar Publications

Understanding the Association Between Neighborhoods and Adolescent Sleep: Evidence from Add Health.

Sleep Epidemiol

December 2024

Socio-Spatial Determinants of Health (SSDH) Laboratory, Population and Community Health Sciences Branch, Division of Intramural Research, National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, Maryland.

Introduction: Research suggests that perceived neighborhood social environments (PNSE) may contribute to gender and race/ethnicity-based sleep disparities. Our study aimed to examine associations between PNSE factors and adolescents' sleep patterns. As a secondary aim, we examined how gender and race/ethnic groups might moderate these associations.

View Article and Find Full Text PDF

Purpose: To propose a domain-conditioned and temporal-guided diffusion modeling method, termed dynamic Diffusion Modeling (dDiMo), for accelerated dynamic MRI reconstruction, enabling diffusion process to characterize spatiotemporal information for time-resolved multi-coil Cartesian and non-Cartesian data.

Methods: The dDiMo framework integrates temporal information from time-resolved dimensions, allowing for the concurrent capture of intra-frame spatial features and inter-frame temporal dynamics in diffusion modeling. It employs additional spatiotemporal ($x$-$t$) and self-consistent frequency-temporal ($k$-$t$) priors to guide the diffusion process.

View Article and Find Full Text PDF

In the realm of 3D measurement, photometric stereo excels in capturing high-frequency details but suffers from accumulated errors that lead to low-frequency distortions in the reconstructed surface. Conversely, light field (LF) reconstruction provides satisfactory low-frequency geometry but sacrifices spatial resolution, impacting high-frequency detail quality. To tackle these challenges, we propose a photometric stereoscopic light field measurement (PSLFM) scheme that harnesses the strengths of both methods.

View Article and Find Full Text PDF

The Goos-Hänchen and Imbert-Fedorov shifts are significant wave phenomena, yet the underlying mechanism governing the spatiotemporal vortex pulses reflected and refracted on graphene remains opaque. In this study, we analytically derive the expressions for the centroid shifts of spatiotemporal vortex pulses by applying the Fresnel-Snell formulas to each plane wave in the incident spatiotemporal vortex pulse spectrum. We demonstrate that the longitudinal shifts are correlated with the angular shifts, and thus, both are subject to resonant enhancement in the vicinity of the Brewster angle.

View Article and Find Full Text PDF

We developed a scanning dual-comb spectroscopic microscopy (S-DCSM) system to acquire multidimensional optical information of transparent or semi-transparent samples. The system demonstrated the capability to perform spectral imaging of absorbance, optical phase, optical thickness, linear dichroism, and birefringence within the spectral range covered by optical frequency combs (OFCs). The spatial distribution of optical thickness in HeLa cells was measured as 8.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!